Stellar Dynamics
Stellar dynamics is the branch of astrophysics which describes in a statistical way the collective motions of stars subject to their mutual gravity. The essential difference from celestial mechanics is that the number of body N \gg 10. Typical galaxies have upwards of millions of macroscopic gravitating bodies and countless number of neutrinos and perhaps other dark microscopic bodies. Also each star contributes more or less equally to the total gravitational field, whereas in celestial mechanics the pull of a massive body dominates any satellite orbits. Connection with fluid dynamics Stellar dynamics also has connections to the field of plasma physics. The two fields underwent significant development during a similar time period in the early 20th century, and both borrow mathematical formalism originally developed in the field of fluid mechanics. In accretion disks and stellar surfaces, the dense plasma or gas particles collide very frequently, and collisions result in equ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Astrophysics
Astrophysics is a science that employs the methods and principles of physics and chemistry in the study of astronomical objects and phenomena. As one of the founders of the discipline said, Astrophysics "seeks to ascertain the nature of the heavenly bodies, rather than their positions or motions in space–''what'' they are, rather than ''where'' they are." Among the subjects studied are the Sun, other stars, galaxies, extrasolar planets, the interstellar medium and the cosmic microwave background. Emissions from these objects are examined across all parts of the electromagnetic spectrum, and the properties examined include luminosity, density, temperature, and chemical composition. Because astrophysics is a very broad subject, ''astrophysicists'' apply concepts and methods from many disciplines of physics, including classical mechanics, electromagnetism, statistical mechanics, thermodynamics, quantum mechanics, relativity, nuclear and particle physics, and atomic a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tidal Force
The tidal force is a gravitational effect that stretches a body along the line towards the center of mass of another body due to a gradient (difference in strength) in gravitational field from the other body; it is responsible for diverse phenomena, including tides, tidal locking, breaking apart of celestial bodies and formation of ring systems within the Roche limit, and in extreme cases, spaghettification of objects. It arises because the gravitational field exerted on one body by another is not constant across its parts: the nearest side is attracted more strongly than the farthest side. It is this difference that causes a body to get stretched. Thus, the tidal force is also known as the differential force, as well as a secondary effect of the gravitational field. In celestial mechanics, the expression ''tidal force'' can refer to a situation in which a body or material (for example, tidal water) is mainly under the gravitational influence of a second body (for example, th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cross Section
Cross section may refer to: * Cross section (geometry) ** Cross-sectional views in architecture & engineering 3D *Cross section (geology) * Cross section (electronics) * Radar cross section, measure of detectability * Cross section (physics) **Absorption cross section **Nuclear cross section **Neutron cross section **Photoionisation cross section **Gamma ray cross section * ''Cross Section'' (album), 1956 musical album by Billy Taylor See also * Cross section (fiber), microscopic view of textile fibers. *Section (fiber bundle), in differential and algebraic geometry and topology, a section of a fiber bundle or sheaf *Cross-sectional data, in statistics, econometrics, and medical research, a data set drawn from a single point in time **Cross-sectional study, a scientific investigation utilizing cross-sectional data ***Cross-sectional regression In statistics and econometrics, a cross-sectional regression is a type of regression in which the explained and explanatory variables ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mean Free Path
In physics, mean free path is the average distance over which a moving particle (such as an atom, a molecule, or a photon) travels before substantially changing its direction or energy (or, in a specific context, other properties), typically as a result of one or more successive collisions with other particles. Scattering theory Imagine a beam of particles being shot through a target, and consider an infinitesimally thin slab of the target (see the figure). The atoms (or particles) that might stop a beam particle are shown in red. The magnitude of the mean free path depends on the characteristics of the system. Assuming that all the target particles are at rest but only the beam particle is moving, that gives an expression for the mean free path: :\ell = (\sigma n)^, where is the mean free path, is the number of target particles per unit volume, and is the effective cross-sectional area for collision. The area of the slab is , and its volume is . The typical number of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Spherical Cow
Comic of a spherical cow as illustrated by a 1996 meeting of the American Astronomical Association, in reference to astronomy modeling The spherical cow is a humorous metaphor for highly simplified scientific models of complex phenomena. Originating in theoretical physics, the metaphor refers to physicists' tendency to reduce a problem to the simplest form imaginable in order to make calculations more feasible, even if the simplification hinders the model's application to reality. The metaphor and variants have subsequently been used in other disciplines. History The phrase comes from a joke that spoofs the simplifying assumptions sometimes used in theoretical physics. It is told in many variants, including a joke about a physicist who said he could predict the winner of any race provided it involved spherical horses moving through a vacuum. A 1973 letter to the editor in the journal '' Science'' describes the "famous story" about a physicist whose solution to a poultry ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sound Speed
The speed of sound is the distance travelled per unit of time by a sound wave as it propagates through an elastic medium. At , the speed of sound in air is about , or one kilometre in or one mile in . It depends strongly on temperature as well as the medium through which a sound wave is propagating. At , the speed of sound in air is about . The speed of sound in an ideal gas depends only on its temperature and composition. The speed has a weak dependence on frequency and pressure in ordinary air, deviating slightly from ideal behavior. In colloquial speech, ''speed of sound'' refers to the speed of sound waves in air. However, the speed of sound varies from substance to substance: typically, sound travels most slowly in gases, faster in liquids, and fastest in solids. For example, while sound travels at in air, it travels at in water (almost 4.3 times as fast) and at in iron (almost 15 times as fast). In an exceptionally stiff material such as diamond, sound travels at ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Circular Rotation Speed
{{disambiguation ...
Circular may refer to: * The shape of a circle * ''Circular'' (album), a 2006 album by Spanish singer Vega * Circular letter (other) ** Flyer (pamphlet), a form of advertisement * Circular reasoning, a type of logical fallacy * Circular reference * Government circular, a written statement of government policy See also * Circular DNA (other) * Circular Line (other) * Circularity (other) Circularity may refer to: *Circular definition * Circular economy *Circular reasoning, also known as circular logic **Begging the question *Circularity of an object or roundness *A circularity ratio as a compactness measure of a shape *An assumpti ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Impact Parameter
In physics, the impact parameter is defined as the perpendicular distance between the path of a projectile and the center of a potential field created by an object that the projectile is approaching (see diagram). It is often referred to in nuclear physics (see Rutherford scattering) and in classical mechanics. The impact parameter is related to the scattering angle by : \theta = \pi - 2b\int_^\infty \frac, where is the velocity of the projectile when it is far from the center, and is its closest distance from the center. Scattering from a hard sphere The simplest example illustrating the use of the impact parameter is in the case of scattering from a sphere. Here, the object that the projectile is approaching is a hard sphere with radius R. In the case of a hard sphere, U(r) = 0 when r > R, and U(r) = \infty for r \leq R . When b > R , the projectile misses the hard sphere. We immediately see that \theta = 0. When b \leq R, we find that b = R \cos\tfrac. Collision ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Relaxation (physics)
In the physical sciences, relaxation usually means the return of a perturbed system into equilibrium. Each relaxation process can be categorized by a relaxation time τ. The simplest theoretical description of relaxation as function of time ''t'' is an exponential law ( exponential decay). In simple linear systems Mechanics: Damped unforced oscillator Let the homogeneous differential equation: :m\frac+\gamma\frac+ky=0 model damped unforced oscillations of a weight on a spring. The displacement will then be of the form y(t) = A e^ \cos(\mu t - \delta). The constant T (=2m/\gamma) is called the relaxation time of the system and the constant μ is the quasi-frequency. Electronics: RC circuit In an RC circuit containing a charged capacitor and a resistor, the voltage decays exponentially: : V(t)=V_0 e^ \ , The constant \tau = RC\ is called the ''relaxation time'' or RC time constant of the circuit. A nonlinear oscillator circuit which generates a repeating waveform by ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gravitational Focusing
In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the strong interaction, 1036 times weaker than the electromagnetic force and 1029 times weaker than the weak interaction. As a result, it has no significant influence at the level of subatomic particles. However, gravity is the most significant interaction between objects at the macroscopic scale, and it determines the motion of planets, stars, galaxies, and even light. On Earth, gravity gives weight to physical objects, and the Moon's gravity is responsible for sublunar tides in the oceans (the corresponding antipodal tide is caused by the inertia of the Earth and Moon orbiting one another). Gravity also has many important biological functions, helping to guide the growth of plants through the process of gravitropism and influencing the circulatio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gaussian Distribution
In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is : f(x) = \frac e^ The parameter \mu is the mean or expectation of the distribution (and also its median and mode), while the parameter \sigma is its standard deviation. The variance of the distribution is \sigma^2. A random variable with a Gaussian distribution is said to be normally distributed, and is called a normal deviate. Normal distributions are important in statistics and are often used in the natural and social sciences to represent real-valued random variables whose distributions are not known. Their importance is partly due to the central limit theorem. It states that, under some conditions, the average of many samples (observations) of a random variable with finite mean and variance is itself a random variable—whose distribution converges to a normal distr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Maxwell Distribution
Maxwell may refer to: People * Maxwell (surname), including a list of people and fictional characters with the name ** James Clerk Maxwell, mathematician and physicist * Justice Maxwell (other) * Maxwell baronets, in the Baronetage of Nova Scotia * Maxwell (footballer, born 1979), Brazilian forward * Maxwell (footballer, born 1981), Brazilian left-back * Maxwell (footballer, born 1986), Brazilian striker * Maxwell (footballer, born 1989), Brazilian left-back * Maxwell (footballer, born 1995), Brazilian forward * Maxwell (musician) (born 1973), American R&B and neo-soul singer * Maxwell (rapper) (born 1993), German rapper, member of rap band 187 Strassenbande * Maxwell Jacob Friedman (born 1997) AEW Professional wrestler * Maxwell Silva (born 1953), Sri Lankan Sinhala Catholic cleric, Auxiliary Bishop of Colombo Places United States * Maxwell, California * Maxwell, Indiana * Maxwell, Iowa * Maxwell, Nebraska * Maxwell, New Mexico * Maxwell, Texas * Maxwell Ai ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |