Stack (mathematics)
In mathematics a stack or 2-sheaf is, roughly speaking, a sheaf (mathematics), sheaf that takes values in category (mathematics), categories rather than sets. Stacks are used to formalise some of the main constructions of descent theory, and to construct fine moduli stacks when fine moduli spaces do not exist. Descent theory is concerned with generalisations of situations where isomorphism, isomorphic, compatible geometrical objects (such as vector bundles on topological spaces) can be "glued together" within a restriction of the topological basis. In a more general set-up the restrictions are replaced with Pullback (category theory), pullbacks; fibred category, fibred categories then make a good framework to discuss the possibility of such gluing. The intuitive meaning of a stack is that it is a fibred category such that "all possible gluings work". The specification of gluings requires a definition of coverings with regard to which the gluings can be considered. It turns out that ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Categorical Quotient
In algebraic geometry, given a category ''C'', a categorical quotient of an object ''X'' with action of a group ''G'' is a morphism \pi: X \to Y that :(i) is invariant; i.e., \pi \circ \sigma = \pi \circ p_2 where \sigma: G \times X \to X is the given group action and ''p''2 is the projection. :(ii) satisfies the universal property: any morphism X \to Z satisfying (i) uniquely factors through \pi. One of the main motivations for the development of geometric invariant theory was the construction of a categorical quotient for varieties or schemes. Note \pi need not be surjective. Also, if it exists, a categorical quotient is unique up to a canonical isomorphism. In practice, one takes ''C'' to be the category of varieties or the category of schemes over a fixed scheme. A categorical quotient \pi is a universal categorical quotient if it is stable under base change: for any Y' \to Y, \pi': X' = X \times_Y Y' \to Y' is a categorical quotient. A basic result is that geometric quotien ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Grothendieck Construction
In category theory, a branch of mathematics, the category of elements of a presheaf is a category associated to that presheaf whose objects are the elements of sets in the presheaf. It and its generalization are also known as the Grothendieck construction (named after Alexander Grothendieck) especially in the theory of descent, in the theory of stacks, and in fibred category theory. The Grothendieck construction is an instance of straightening (or rather unstraightening). Significance In categorical logic, the construction is used to model the relationship between a type theory and a logic over that type theory, and allows for the translation of concepts from indexed category theory into fibred category theory, such as Lawvere's concept of hyperdoctrine. The category of elements of a simplicial set is fundamental in simplicial homotopy theory, a branch of algebraic topology. More generally, the category of elements plays a key role in the proof that every weighted colimit ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
GIT Quotient
In algebraic geometry, an affine GIT quotient, or affine geometric invariant theory quotient, of an affine scheme X = \operatorname A with an action by a group scheme ''G'' is the affine scheme \operatorname(A^G), the prime spectrum of the ring of invariants of ''A'', and is denoted by X /\!/ G. A GIT quotient is a categorical quotient: any invariant morphism uniquely factors through it. Taking Proj (of a graded ring) instead of \operatorname, one obtains a projective GIT quotient (which is a quotient of the set of semistable points.) A GIT quotient is a categorical quotient of the locus of semistable points; i.e., "the" quotient of the semistable locus. Since the categorical quotient is unique, if there is a geometric quotient, then the two notions coincide: for example, one has :G / H = G /\!/ H = \operatorname\!\big(k H\big) for an algebraic group ''G'' over a field ''k'' and closed subgroup ''H''. If ''X'' is a complex smooth projective variety and if ''G'' is a reducti ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Étale Morphism
In algebraic geometry, an étale morphism () is a morphism of schemes that is formally étale and locally of finite presentation. This is an algebraic analogue of the notion of a local isomorphism in the complex analytic topology. They satisfy the hypotheses of the implicit function theorem, but because open sets in the Zariski topology are so large, they are not necessarily local isomorphisms. Despite this, étale maps retain many of the properties of local analytic isomorphisms, and are useful in defining the algebraic fundamental group and the étale topology. The word ''étale'' is a French adjective, which means "slack", as in "slack tide", or, figuratively, calm, immobile, something left to settle. Definition Let \phi : R \to S be a ring homomorphism. This makes S an R-algebra. Choose a monic polynomial f in R /math> and a polynomial g in R /math> such that the derivative f' of f is a unit in (R fR _g. We say that \phi is ''standard étale'' if f and g can be cho ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Reductive Group
In mathematics, a reductive group is a type of linear algebraic group over a field. One definition is that a connected linear algebraic group ''G'' over a perfect field is reductive if it has a representation that has a finite kernel and is a direct sum of irreducible representations. Reductive groups include some of the most important groups in mathematics, such as the general linear group ''GL''(''n'') of invertible matrices, the special orthogonal group ''SO''(''n''), and the symplectic group ''Sp''(2''n''). Simple algebraic groups and (more generally) semisimple algebraic groups are reductive. Claude Chevalley showed that the classification of reductive groups is the same over any algebraically closed field. In particular, the simple algebraic groups are classified by Dynkin diagrams, as in the theory of compact Lie groups or complex semisimple Lie algebras. Reductive groups over an arbitrary field are harder to classify, but for many fields such as the real numbers R o ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Deligne–Mumford Stack
In algebraic geometry, a Deligne–Mumford stack is a stack ''F'' such that Pierre Deligne and David Mumford introduced this notion in 1969 when they proved that moduli spaces of stable curves of fixed arithmetic genus are proper smooth Deligne–Mumford stacks. If the "étale" is weakened to " smooth", then such a stack is called an algebraic stack (also called an Artin stack, after Michael Artin). An algebraic space is Deligne–Mumford. A key fact about a Deligne–Mumford stack ''F'' is that any ''X'' in F(B), where ''B'' is quasi-compact, has only finitely many automorphisms. A Deligne–Mumford stack admits a presentation by a groupoid In mathematics, especially in category theory and homotopy theory, a groupoid (less often Brandt groupoid or virtual group) generalises the notion of group in several equivalent ways. A groupoid can be seen as a: * '' Group'' with a partial fu ...; see groupoid scheme. Examples Affine Stacks Deligne–Mumford stacks are typica ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Morphism Of Algebraic Stacks
In algebraic geometry, given algebraic stacks p: X \to C, \, q: Y \to C over a base category ''C'', a morphism f: X \to Y of algebraic stacks is a functor such that q \circ f = p. More generally, one can also consider a morphism between prestacks (a stackification would be an example). Types One particular important example is a presentation of a stack, which is widely used in the study of stacks. An algebraic stack ''X'' is said to be smooth of dimension ''n'' - ''j'' if there is a smooth presentation U \to X of relative dimension ''j'' for some smooth scheme ''U'' of dimension ''n''. For example, if \operatorname_n denotes the moduli stack of rank-''n'' vector bundles, then there is a presentation \operatorname(k) \to \operatorname_n given by the trivial bundle \mathbb^n_k over \operatorname(k). A quasi-affine morphism between algebraic stacks is a morphism that factorizes as a quasi-compact open immersion followed by an affine morphism In algebraic geometry, a sheaf ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Universal Property
In mathematics, more specifically in category theory, a universal property is a property that characterizes up to an isomorphism the result of some constructions. Thus, universal properties can be used for defining some objects independently from the method chosen for constructing them. For example, the definitions of the integers from the natural numbers, of the rational numbers from the integers, of the real numbers from the rational numbers, and of polynomial rings from the field (mathematics), field of their coefficients can all be done in terms of universal properties. In particular, the concept of universal property allows a simple proof that all constructions of real numbers are equivalent: it suffices to prove that they satisfy the same universal property. Technically, a universal property is defined in terms of category (mathematics), categories and functors by means of a universal morphism (see , below). Universal morphisms can also be thought more abstractly as Initia ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Fiber Product
In category theory, a branch of mathematics, a pullback (also called a fiber product, fibre product, fibered product or Cartesian square) is the limit of a diagram consisting of two morphisms and with a common codomain. The pullback is written :. Usually the morphisms and are omitted from the notation, and then the pullback is written :. The pullback comes equipped with two natural morphisms and . The pullback of two morphisms and need not exist, but if it does, it is essentially uniquely defined by the two morphisms. In many situations, may intuitively be thought of as consisting of pairs of elements with in , in , and . For the general definition, a universal property is used, which essentially expresses the fact that the pullback is the "most general" way to complete the two given morphisms to a commutative square. The dual concept of the pullback is the '' pushout''. Universal property Explicitly, a pullback of the morphisms f and g consists of an object ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Prestack
In algebraic geometry, a prestack ''F'' over a category ''C'' equipped with some Grothendieck topology is a category together with a functor ''p'': ''F'' → ''C'' satisfying a certain lifting condition and such that (when the fibers are groupoids) locally isomorphic objects are isomorphic. A stack is a prestack with effective descents, meaning local objects may be patched together to become a global object. Prestacks that appear in nature are typically stacks but some naively constructed prestacks (e.g., groupoid scheme or the prestack of projectivized vector bundles) may not be stacks. Prestacks may be studied on their own or passed to stacks. Since a stack is a prestack, all the results on prestacks are valid for stacks as well. Throughout the article, we work with a fixed base category ''C''; for example, ''C'' can be the category of all schemes over some fixed scheme equipped with some Grothendieck topology. Informal definition Let ''F'' be a category and suppose it is ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |