Sgoldstino
A sgoldstino is any of the spin-0 superpartners of the goldstino in relativistic quantum field theories with spontaneously broken supersymmetry. The term ''sgoldstino'' was first used in 1998. In 2016, Petersson and Torre hypothesized that a sgoldstino particle might be responsible for the observed 750 GeV diphoton excess observed by Large Hadron Collider The Large Hadron Collider (LHC) is the world's largest and highest-energy particle accelerator. It was built by the CERN, European Organization for Nuclear Research (CERN) between 1998 and 2008, in collaboration with over 10,000 scientists, ... experiments. References Supersymmetric quantum field theory Bosons Hypothetical elementary particles Subatomic particles with spin 0 {{Particle-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
750 GeV Diphoton Excess
The 750 GeV diphoton excess in particle physics was an anomaly in data collected at the Large Hadron Collider (LHC) in 2015, which could have been an indication of a new particle or resonance. The anomaly was absent in data collected in 2016, suggesting that the diphoton excess was a statistical fluctuation. In the interval between the December 2015 and August 2016 results, the anomaly generated considerable interest in the scientific community, including about 500 theoretical studies. The hypothetical particle was denoted by the Greek letter Ϝ (pronounced digamma) in the scientific literature, owing to the decay channel in which the anomaly occurred. The data, however, were always less than five standard deviations (sigma) different from that expected if there was no new particle, and, as such, the anomaly never reached the accepted level of statistical significance required to announce a discovery in particle physics. After the August 2016 results, interest in the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Superpartner
In particle physics, a superpartner (also sparticle) is a class of hypothetical elementary particles predicted by supersymmetry, which, among other applications, is one of the well-studied ways to extend the Standard Model of high-energy physics. When considering extensions of the Standard Model, the ''s-'' prefix from ''sparticle'' is used to form names of superpartners of the Standard Model fermions ( sfermions),Alexander I. Studenikin (ed.), ''Particle Physics in Laboratory, Space and Universe'', World Scientific, 2005, p. 327. e.g. the stop squark. The superpartners of Standard Model bosons have an ''-ino'' (bosinos) appended to their name, e.g. gluino, the set of all gauge superpartners are called the gauginos. Theoretical predictions According to the supersymmetry theory, each fermion should have a partner boson, the fermion's superpartner, and each boson should have a partner fermion. Exact ''unbroken'' supersymmetry would predict that a particle and its superpartners ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Goldstino
The goldstino is the Nambu–Goldstone fermion emerging in the spontaneous breaking of supersymmetry. It is the close fermionic analog of the Nambu–Goldstone bosons controlling the spontaneous breakdown of ordinary bosonic symmetries. As in the case of Goldstone bosons, it is massless, unless there is, in addition, a small explicit supersymmetry breakdown involved, on top of the basic spontaneous breakdown; in this case it develops a ''small'' mass, analogous to that of Pseudo-Goldstone bosons of chiral symmetry breaking. In theories where supersymmetry is a global symmetry, the goldstino is an ordinary particle (possibly the lightest supersymmetric particle, responsible for dark matter). In theories where supersymmetry is a local symmetry, the goldstino is absorbed by the gravitino, the gauge field it couples to, becoming its longitudinal component, and giving it nonvanishing mass. This mechanism is a close analog of the way the Higgs field gives nonzero mass to the W ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Relativistic Quantum Field Theories
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles. The current standard model of particle physics is based on QFT. History Quantum field theory emerged from the work of generations of theoretical physicists spanning much of the 20th century. Its development began in the 1920s with the description of interactions between light and electrons, culminating in the first quantum field theory—quantum electrodynamics. A major theoretical obstacle soon followed with the appearance and persistence of various infinities in perturbative calculations, a problem only resolved in the 1950s with the invention of the renormalization procedure. A second major barrier came with QFT's apparent inability to describe the weak ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Spontaneous Symmetry Breaking
Spontaneous symmetry breaking is a spontaneous process of symmetry breaking, by which a physical system in a symmetric state spontaneously ends up in an asymmetric state. In particular, it can describe systems where the equations of motion or the Lagrangian obey symmetries, but the lowest-energy vacuum solutions do not exhibit that same symmetry. When the system goes to one of those vacuum solutions, the symmetry is broken for perturbations around that vacuum even though the entire Lagrangian retains that symmetry. Overview The spontaneous symmetry breaking cannot happen in quantum mechanics that describes finite dimensional systems, due to Stone-von Neumann theorem (that states the uniqueness of Heisenberg commutation relations in finite dimensions). So spontaneous symmetry breaking can be observed only in infinite dimensional theories, as quantum field theories. By definition, spontaneous symmetry breaking requires the existence of physical laws which are invariant ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Supersymmetry Breaking
In particle physics, supersymmetry breaking or SUSY breaking is a process via which a seemingly non- supersymmetric physics emerges from a supersymmetric theory. Assuming a breaking of supersymmetry is a necessary step to reconcile supersymmetry with experimental observations. Superpartner particles, whose mass is equal to the mass of the regular particles in supersymmetry, become much heavier with supersymmetry breaking. In supergravity, this results in a slightly modified counterpart of the Higgs mechanism where the gravitinos become massive. Supersymmetry breaking is relevant in the domain of applicability of stochastic differential equations, which includes classical physics, and encompasses nonlinear dynamical phenomena as chaos, turbulence, and pink noise. Various mechanisms for this breaking have been discussed by physicists, including soft SUSY breaking and types of spontaneous symmetry breaking. Supersymmetry breaking scale The energy scale where supersymmetry breaking ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Physics Letters B
Physics is the scientific study of matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which relates to the order of nature, or, in other words, to the regular succession of events." It is one of the most fundamental scientific disciplines. "Physics is one of the most fundamental of the sciences. Scientists of all disciplines use the ideas of physics, including chemists who study the structure of molecules, paleontologists who try to reconstruct how dinosaurs walked, and climatologists who study how human activities affect the atmosphere and oceans. Physics is also the foundation of all engineering and technology. No engineer could design a flat-screen TV, an interplanetary spacecraft, or even a better mousetrap without first understanding the basic laws of physics. (...) You will come to see physics as a towering achievement of the human intellect ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Large Hadron Collider
The Large Hadron Collider (LHC) is the world's largest and highest-energy particle accelerator. It was built by the CERN, European Organization for Nuclear Research (CERN) between 1998 and 2008, in collaboration with over 10,000 scientists, and hundreds of universities and laboratories across more than 100 countries. It lies in a tunnel in circumference and as deep as beneath the France–Switzerland border near Geneva. The first collisions were achieved in 2010 at an energy of 3.5 tera-electronvolts (TeV) per beam, about four times the previous world record. The discovery of the Higgs boson at the LHC was announced in 2012. Between 2013 and 2015, the LHC was shut down and upgraded; after those upgrades it reached 6.5 TeV per beam (13.0 TeV total collision energy). At the end of 2018, it was shut down for maintenance and further upgrades, and reopened over three years later in April 2022. The collider has four crossing points where the accelerated particles ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Supersymmetric Quantum Field Theory
Supersymmetry is a theoretical framework in physics that suggests the existence of a symmetry between particles with integer spin (''bosons'') and particles with half-integer spin (''fermions''). It proposes that for every known particle, there exists a partner particle with different spin properties. There have been multiple experiments on supersymmetry that have failed to provide evidence that it exists in nature. If evidence is found, supersymmetry could help explain certain phenomena, such as the nature of dark matter and the hierarchy problem in particle physics. A supersymmetric theory is a theory in which the equations for force and the equations for matter are identical. In theoretical and mathematical physics, any theory with this property has the ''principle of supersymmetry'' (SUSY). Dozens of supersymmetric theories exist. In theory, supersymmetry is a type of spacetime symmetry between two basic classes of particles: bosons, which have an integer-valued spin and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bosons
In particle physics, a boson ( ) is a subatomic particle whose spin quantum number has an integer value (0, 1, 2, ...). Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have half odd-integer spin (1/2, 3/2, 5/2, ...). Every observed subatomic particle is either a boson or a fermion. Paul Dirac coined the name ''boson'' to commemorate the contribution of Satyendra Nath Bose, an Indian physicist. Some bosons are elementary particles occupying a special role in particle physics, distinct from the role of fermions (which are sometimes described as the constituents of "ordinary matter"). Certain elementary bosons (e.g. gluons) act as force carriers, which give rise to forces between other particles, while one (the Higgs boson) contributes to the phenomenon of mass. Other bosons, such as mesons, are composite particles made up of smaller constituents. Outside the realm of particle physics, multiple identical composite bosons be ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hypothetical Elementary Particles
A hypothesis (: hypotheses) is a proposed explanation for a phenomenon. A scientific hypothesis must be based on observations and make a testable and reproducible prediction about reality, in a process beginning with an educated guess or thought. If a hypothesis is repeatedly independently demonstrated by experiment to be true, it becomes a scientific theory. In colloquial usage, the words "hypothesis" and "theory" are often used interchangeably, but this is incorrect in the context of science. A working hypothesis is a provisionally-accepted hypothesis used for the purpose of pursuing further progress in research. Working hypotheses are frequently discarded, and often proposed with knowledge (and warning) that they are incomplete and thus false, with the intent of moving research in at least somewhat the right direction, especially when scientists are stuck on an issue and brainstorming ideas. A different meaning of the term ''hypothesis'' is used in formal logic, to deno ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |