HOME





Separation Principle
In control theory, a separation principle, more formally known as a principle of separation of estimation and control, states that under some assumptions the problem of designing an optimal feedback controller for a stochastic system can be solved by designing an optimal state observer, observer for the state of the system, which feeds into an optimal deterministic controller (control theory), controller for the system. Thus the problem can be broken into two separate parts, which facilitates the design. The first instance of such a principle is in the setting of deterministic linear systems, namely that if a stable state observer, observer and a stable state feedback are designed for a LTI system theory, linear time-invariant system (LTI system hereafter), then the combined observer and feedback is BIBO stability, stable. The separation principle does not hold in general for nonlinear systems. Another instance of the separation principle arises in the setting of linear stochastic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Control Theory
Control theory is a field of control engineering and applied mathematics that deals with the control system, control of dynamical systems in engineered processes and machines. The objective is to develop a model or algorithm governing the application of system inputs to drive the system to a desired state, while minimizing any ''delay'', ''overshoot'', or ''steady-state error'' and ensuring a level of control Stability theory, stability; often with the aim to achieve a degree of Optimal control, optimality. To do this, a controller with the requisite corrective behavior is required. This controller monitors the controlled process variable (PV), and compares it with the reference or Setpoint (control system), set point (SP). The difference between actual and desired value of the process variable, called the ''error'' signal, or SP-PV error, is applied as feedback to generate a control action to bring the controlled process variable to the same value as the set point. Other aspects ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

State Observer
In control theory, a state observer, state estimator, or Luenberger observer is a system that provides an estimate of the state space (controls), internal state of a given real system, from measurements of the Input/output, input and output of the real system. It is typically computer-implemented, and provides the basis of many practical applications. Knowing the system state is necessary to solve many control theory problems; for example, stabilizing a system using Full state feedback, state feedback. In most practical cases, the physical state of the system cannot be determined by direct observation. Instead, indirect effects of the internal state are observed by way of the system outputs. A simple example is that of vehicles in a tunnel: the rates and velocities at which vehicles enter and leave the tunnel can be observed directly, but the exact state inside the tunnel can only be estimated. If a system is Observability, observable, it is possible to fully reconstruct the sy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Controller (control Theory)
Control theory is a field of control engineering and applied mathematics that deals with the control of dynamical systems in engineered processes and machines. The objective is to develop a model or algorithm governing the application of system inputs to drive the system to a desired state, while minimizing any ''delay'', ''overshoot'', or ''steady-state error'' and ensuring a level of control stability; often with the aim to achieve a degree of optimality. To do this, a controller with the requisite corrective behavior is required. This controller monitors the controlled process variable (PV), and compares it with the reference or set point (SP). The difference between actual and desired value of the process variable, called the ''error'' signal, or SP-PV error, is applied as feedback to generate a control action to bring the controlled process variable to the same value as the set point. Other aspects which are also studied are controllability and observability. Control ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Feedback
Feedback occurs when outputs of a system are routed back as inputs as part of a chain of cause and effect that forms a circuit or loop. The system can then be said to ''feed back'' into itself. The notion of cause-and-effect has to be handled carefully when applied to feedback systems: History Self-regulating mechanisms have existed since antiquity, and the idea of feedback started to enter economic theory in Britain by the 18th century, but it was not at that time recognized as a universal abstraction and so did not have a name. The first ever known artificial feedback device was a float valve, for maintaining water at a constant level, invented in 270 BC in Alexandria, Egypt. This device illustrated the principle of feedback: a low water level opens the valve, the rising water then provides feedback into the system, closing the valve when the required level is reached. This then reoccurs in a circular fashion as the water level fluctuates. Centrifugal governors were ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

LTI System Theory
In system analysis, among other fields of study, a linear time-invariant (LTI) system is a system that produces an output signal from any input signal subject to the constraints of linearity and time-invariance; these terms are briefly defined in the overview below. These properties apply (exactly or approximately) to many important physical systems, in which case the response of the system to an arbitrary input can be found directly using convolution: where is called the system's impulse response and ∗ represents convolution (not to be confused with multiplication). What's more, there are systematic methods for solving any such system (determining ), whereas systems not meeting both properties are generally more difficult (or impossible) to solve analytically. A good example of an LTI system is any electrical circuit consisting of resistors, capacitors, inductors and linear amplifiers. Linear time-invariant system theory is also used in image processing, where the s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


BIBO Stability
In signal processing, specifically control theory, bounded-input, bounded-output (BIBO) stability is a form of stability for signals and systems that take inputs. If a system is BIBO stable, then the output will be bounded for every input to the system that is bounded. A signal is bounded if there is a finite value B > 0 such that the signal magnitude never exceeds B, that is :For discrete-time signals: \exists B \forall n(\ , y \leq B) \quad n \in \mathbb :For continuous-time signals: \exists B \forall t(\ , y(t), \leq B) \quad t \in \mathbb Time-domain condition for linear time-invariant systems Continuous-time necessary and sufficient condition For a continuous time linear time-invariant (LTI) system, the condition for BIBO stability is that the impulse response, h(t) , be absolutely integrable, i.e., its L1 norm exists. : \int_^\infty \left, h(t)\\,\mathordt = \, h \, _1 \in \mathbb Discrete-time sufficient condition For a discrete time LTI system, the condition f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kalman Filter
In statistics and control theory, Kalman filtering (also known as linear quadratic estimation) is an algorithm that uses a series of measurements observed over time, including statistical noise and other inaccuracies, to produce estimates of unknown variables that tend to be more accurate than those based on a single measurement, by estimating a joint probability distribution over the variables for each time-step. The filter is constructed as a mean squared error minimiser, but an alternative derivation of the filter is also provided showing how the filter relates to maximum likelihood statistics. The filter is named after Rudolf E. Kálmán. Kalman filtering has numerous technological applications. A common application is for guidance, navigation, and control of vehicles, particularly aircraft, spacecraft and ships Dynamic positioning, positioned dynamically. Furthermore, Kalman filtering is much applied in time series analysis tasks such as signal processing and econometrics. K ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Separation Principle In Stochastic Control
The separation principle is one of the fundamental principles of stochastic control theory, which states that the problems of optimal control and state estimation can be decoupled under certain conditions. In its most basic formulation it deals with a linear stochastic system :\begin dx & =A(t)x(t)\,dt+B_1(t)u(t)\,dt+B_2(t)\,dw \\ dy & =C(t)x(t)\,dt +D(t)\,dw \end with a state process x, an output process y and a control u, where w is a vector-valued Wiener process, x(0) is a zero-mean Gaussian random vector independent of w, y(0)=0, and A, B_1, B_2, C, D are matrix-valued functions which generally are taken to be continuous of bounded variation. Moreover, DD' is nonsingular on some interval ,T/math>. The problem is to design an output feedback law \pi:\, y \mapsto u which maps the observed process y to the control input u in a nonanticipatory manner so as to minimize the functional : J(u) = \mathbb\left\, where \mathbb denotes expected value, prime (') denotes transpose ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Triangular Matrix
In mathematics, a triangular matrix is a special kind of square matrix. A square matrix is called if all the entries ''above'' the main diagonal are zero. Similarly, a square matrix is called if all the entries ''below'' the main diagonal are zero. Because matrix equations with triangular matrices are easier to solve, they are very important in numerical analysis. By the LU decomposition algorithm, an invertible matrix may be written as the matrix multiplication, product of a lower triangular matrix ''L'' and an upper triangular matrix ''U'' if and only if all its leading principal minor (linear algebra), minors are non-zero. Description A matrix of the form :L = \begin \ell_ & & & & 0 \\ \ell_ & \ell_ & & & \\ \ell_ & \ell_ & \ddots & & \\ \vdots & \vdots & \ddots & \ddots & \\ \ell_ & \ell_ & \ldots & \ell_ & \ell_ \end is called a lower trian ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Eigenvalues
In linear algebra, an eigenvector ( ) or characteristic vector is a vector that has its direction unchanged (or reversed) by a given linear transformation. More precisely, an eigenvector \mathbf v of a linear transformation T is scaled by a constant factor \lambda when the linear transformation is applied to it: T\mathbf v=\lambda \mathbf v. The corresponding eigenvalue, characteristic value, or characteristic root is the multiplying factor \lambda (possibly a negative or complex number). Geometrically, vectors are multi-dimensional quantities with magnitude and direction, often pictured as arrows. A linear transformation rotates, stretches, or shears the vectors upon which it acts. A linear transformation's eigenvectors are those vectors that are only stretched or shrunk, with neither rotation nor shear. The corresponding eigenvalue is the factor by which an eigenvector is stretched or shrunk. If the eigenvalue is negative, the eigenvector's direction is reversed. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]