Semi-naïve Evaluation
   HOME





Semi-naïve Evaluation
Datalog is a declarative logic programming language. While it is syntactically a subset of Prolog, Datalog generally uses a bottom-up rather than top-down evaluation model. This difference yields significantly different behavior and properties from Prolog. It is often used as a query language for deductive databases. Datalog has been applied to problems in data integration, networking, program analysis, and more. Example A Datalog program consists of ''facts'', which are statements that are held to be true, and ''rules'', which say how to deduce new facts from known facts. For example, here are two facts that mean ''xerces is a parent of brooke'' and ''brooke is a parent of damocles'': parent(xerces, brooke). parent(brooke, damocles). The names are written in lowercase because strings beginning with an uppercase letter stand for variables. Here are two rules: ancestor(X, Y) :- parent(X, Y). ancestor(X, Y) :- parent(X, Z), ancestor(Z, Y). The :- symbol is read as "if", a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Logic Programming
Logic programming is a programming, database and knowledge representation paradigm based on formal logic. A logic program is a set of sentences in logical form, representing knowledge about some problem domain. Computation is performed by applying logical reasoning to that knowledge, to solve problems in the domain. Major logic programming language families include Prolog, Answer Set Programming (ASP) and Datalog. In all of these languages, rules are written in the form of ''clauses'': :A :- B1, ..., Bn. and are read as declarative sentences in logical form: :A if B1 and ... and Bn. A is called the ''head'' of the rule, B1, ..., Bn is called the ''body'', and the Bi are called '' literals'' or conditions. When n = 0, the rule is called a ''fact'' and is written in the simplified form: :A. Queries (or goals) have the same syntax as the bodies of rules and are commonly written in the form: :?- B1, ..., Bn. In the simplest case of Horn clauses (or "definite" clauses), all ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Materialized View
In computing, a materialized view is a database object that contains the results of a query. For example, it may be a local copy of data located remotely, or may be a subset of the rows and/or columns of a table or join result, or may be a summary using an aggregate function. The process of setting up a materialized view is sometimes called materialization.Compare: This is a form of caching the results of a query, similar to memoization of the value of a function in functional languages, and it is sometimes described as a form of precomputation. As with other forms of precomputation, database users typically use materialized views for performance reasons, i.e. as a form of optimization. Materialized views that store data based on remote tables were also known as snapshots (deprecated Oracle terminology). In any database management system following the relational model, a view is a virtual table representing the result of a database query. Whenever a query or an update a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Substitution (logic)
A substitution is a syntactic transformation on formal expressions. To ''apply'' a substitution to an expression means to consistently replace its variable, or placeholder, symbols with other expressions. The resulting expression is called a ''substitution instance'', or ''instance'' for short, of the original expression. Propositional logic Definition Where ''ψ'' and ''φ'' represent formulas of propositional logic, ''ψ'' is a ''substitution instance'' of ''φ'' if and only if ''ψ'' may be obtained from ''φ'' by substituting formulas for propositional variables in ''φ'', replacing each occurrence of the same variable by an occurrence of the same formula. For example: ::''ψ:'' (R → S) & (T → S) is a substitution instance of ::''φ:'' P & Q That is, ''ψ'' can be obtained by replacing P and Q in ''φ'' with (R → S) and (T → S) respectively. Similarly: ::''ψ:'' (A ↔ A) ↔ (A ↔ A) is a substitution instance of: ::''φ:'' (A ↔ A) since ''ψ'' can be obta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ground Atom
In mathematical logic, a ground term of a formal system is a term that does not contain any variables. Similarly, a ground formula is a formula that does not contain any variables. In first-order logic with identity with constant symbols a and b, the sentence Q(a) \lor P(b) is a ground formula. A ground expression is a ground term or ground formula. Examples Consider the following expressions in first order logic over a signature containing the constant symbols 0 and 1 for the numbers 0 and 1, respectively, a unary function symbol s for the successor function and a binary function symbol + for addition. * s(0), s(s(0)), s(s(s(0))), \ldots are ground terms; * 0 + 1, \; 0 + 1 + 1, \ldots are ground terms; * 0+s(0), \; s(0)+ s(0), \; s(0)+s(s(0))+0 are ground terms; * x + s(1) and s(x) are terms, but not ground terms; * s(0) = 1 and 0 + 0 = 0 are ground formulae. Formal definitions What follows is a formal definition for first-order languages. Let a first-order language be giv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal Of The ACM
The ''Journal of the ACM'' (''JACM'') is a peer-reviewed scientific journal covering computer science in general, especially theoretical aspects. It is an official journal of the Association for Computing Machinery. Its current editor-in-chief is Venkatesan Guruswami. The journal was established in 1954 and "computer scientists universally hold the ''Journal of the ACM'' in high esteem". See also * ''Communications of the ACM ''Communications of the ACM'' (''CACM'') is the monthly journal of the Association for Computing Machinery (ACM). History It was established in 1958, with Saul Rosen as its first managing editor. It is sent to all ACM members. Articles are i ...'' References External links * {{DEFAULTSORT:Journal Of The Acm Academic journals established in 1954 Computer science journals Association for Computing Machinery academic journals Bimonthly journals English-language journals ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Proof-theoretic Semantics
Proof-theoretic semantics is an approach to the semantics of logic that attempts to locate the meaning of propositions and logical connectives not in terms of interpretations, as in Tarskian approaches to semantics, but in the role that the proposition or logical connective plays within a system of inference. Overview Gerhard Gentzen is the founder of proof-theoretic semantics, providing the formal basis for it in his account of cut-elimination for the sequent calculus, and some provocative philosophical remarks about locating the meaning of logical connectives in their introduction rules within natural deduction. The history of proof-theoretic semantics since then has been devoted to exploring the consequences of these ideas. Dag Prawitz extended Gentzen's notion of analytic proof to natural deduction, and suggested that the value of a proof in natural deduction may be understood as its normal form. This idea lies at the basis of the Curry–Howard isomorphism, and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fixed Point (mathematics)
In mathematics, a fixed point (sometimes shortened to fixpoint), also known as an invariant point, is a value that does not change under a given transformation (mathematics), transformation. Specifically, for function (mathematics), functions, a fixed point is an element that is mapped to itself by the function. Any set of fixed points of a transformation is also an invariant set. Fixed point of a function Formally, is a fixed point of a function if belongs to both the domain of a function, domain and the codomain of , and . In particular, cannot have any fixed point if its domain is disjoint from its codomain. If is defined on the real numbers, it corresponds, in graphical terms, to a curve in the Euclidean plane, and each fixed-point corresponds to an intersection of the curve with the line , cf. picture. For example, if is defined on the real numbers by f(x) = x^2 - 3 x + 4, then 2 is a fixed point of , because . Not all functions have fixed points: for example, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Model Theory
In mathematical logic, model theory is the study of the relationship between theory (mathematical logic), formal theories (a collection of Sentence (mathematical logic), sentences in a formal language expressing statements about a Structure (mathematical logic), mathematical structure), and their Structure (mathematical logic), models (those Structure (mathematical logic), structures in which the statements of the theory hold). The aspects investigated include the number and size of models of a theory, the relationship of different models to each other, and their interaction with the formal language itself. In particular, model theorists also investigate the sets that can be definable set, defined in a model of a theory, and the relationship of such definable sets to each other. As a separate discipline, model theory goes back to Alfred Tarski, who first used the term "Theory of Models" in publication in 1954. Since the 1970s, the subject has been shaped decisively by Saharon Shel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Syntactic Sugar
In computer science, syntactic sugar is syntax within a programming language that is designed to make things easier to read or to express. It makes the language "sweeter" for human use: things can be expressed more clearly, more concisely, or in an alternative style that some may prefer. Syntactic sugar is usually a shorthand for a common operation that could also be expressed in an alternate, more verbose, form: The programmer has a choice of whether to use the shorter form or the longer form, but will usually use the shorter form since it is shorter and easier to type and read. For example, many programming languages provide special syntax for referencing and updating array elements. Abstractly, an array reference is a procedure of two arguments: an array and a subscript vector, which could be expressed as get_array(Array, vector(i,j)). Instead, many languages provide syntax such as Array ,j/code>. Similarly an array element update is a procedure consisting of three arguments, fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Predicate Variable
In mathematical logic, a predicate variable is a predicate letter which functions as a "placeholder" for a relation (between terms), but which has not been specifically assigned any particular relation (or meaning). Common symbols for denoting predicate variables include capital roman letters such as P, Q and R, or lower case roman letters, e.g., x. In first-order logic, they can be more properly called metalinguistic variables. In higher-order logic, predicate variables correspond to propositional variables which can stand for well-formed formulas of the same logic, and such variables can be quantified by means of (at least) second-order quantifiers. Notation Predicate variables should be distinguished from predicate constants, which could be represented either with a different (exclusive) set of predicate letters, or by their own symbols which really do have their own specific meaning in their domain of discourse: e.g. =, \ \in , \ \le,\ <, \ \sub,... . If letters a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Countable Set
In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers; this means that each element in the set may be associated to a unique natural number, or that the elements of the set can be counted one at a time, although the counting may never finish due to an infinite number of elements. In more technical terms, assuming the axiom of countable choice, a set is ''countable'' if its cardinality (the number of elements of the set) is not greater than that of the natural numbers. A countable set that is not finite is said to be countably infinite. The concept is attributed to Georg Cantor, who proved the existence of uncountable sets, that is, sets that are not countable; for example the set of the real numbers. A note on terminology Although the terms "countable" and "countably infinite" as def ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]