HOME



picture info

Scleronomic
A Physical system, mechanical system is scleronomous if the equations of Constraint (classical mechanics), constraints do not contain the time as an explicit Variable (mathematics), variable and the equation of constraints can be described by generalized coordinates. Such constraints are called scleronomic constraints. The opposite of scleronomous is rheonomous. Application In 3-D space, a particle with mass m\,\!, velocity \mathbf has kinetic energy T T =\fracm v^2 . Velocity is the derivative of position r with respect to time t\,\!. Use chain rule#Chain rule for several variables, chain rule for several variables: \mathbf = \frac = \sum_i\ \frac \dot_i + \frac . where q_i are Generalized_coordinates#Holonomic_constraints, generalized coordinates. Therefore, T = \frac m \left(\sum_i\ \frac\dot_i+\frac\right)^2 . Rearranging the terms carefully, \begin T &= T_0 + T_1 + T_2 : \\[1ex] T_0 &= \frac m \left(\frac\right)^2 , \\ T_1 &= \sum_i\ m\frac\cdot \frac\dot_i\,\!, \\ T_ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Constraint (classical Mechanics)
In classical mechanics, a constraint on a system is a parameter that the system must obey. For example, a box sliding down a slope must remain on the slope. There are two different types of constraints: holonomic and non-holonomic. Types of constraint * First class constraints and second class constraints * Primary constraints, secondary constraints, tertiary constraints, quaternary constraints * Holonomic constraints, also called integrable constraints, (depending on time and the coordinates but not on the momenta) and Nonholonomic system * Pfaffian constraints * Scleronomic constraints (not depending on time) and rheonomic constraints (depending on time) *Ideal constraints: those for which the work done by the constraint forces under a virtual displacement In analytical mechanics, a branch of applied mathematics and physics, a virtual displacement (or infinitesimal variation) \delta \gamma shows how the mechanical system's trajectory can ''hypothetically'' (hence the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Physical System
A physical system is a collection of physical objects under study. The collection differs from a set: all the objects must coexist and have some physical relationship. In other words, it is a portion of the physical universe chosen for analysis. Everything outside the system is known as the '' environment'', which is ignored except for its effects on the system. The split between system and environment is the analyst's choice, generally made to simplify the analysis. For example, the water in a lake, the water in half of a lake, or an individual molecule of water in the lake can each be considered a physical system. An '' isolated system'' is one that has negligible interaction with its environment. Often a system in this sense is chosen to correspond to the more usual meaning of system, such as a particular machine. In the study of quantum coherence, the "system" may refer to the microscopic properties of an object (e.g. the mean of a pendulum bob), while the relevant "env ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mechanics
Mechanics () is the area of physics concerned with the relationships between force, matter, and motion among Physical object, physical objects. Forces applied to objects may result in Displacement (vector), displacements, which are changes of an object's position relative to its environment. Theoretical expositions of this branch of physics has its origins in Ancient Greece, for instance, in the writings of Aristotle and Archimedes (see History of classical mechanics and Timeline of classical mechanics). During the early modern period, scientists such as Galileo Galilei, Johannes Kepler, Christiaan Huygens, and Isaac Newton laid the foundation for what is now known as classical mechanics. As a branch of classical physics, mechanics deals with bodies that are either at rest or are moving with velocities significantly less than the speed of light. It can also be defined as the physical science that deals with the motion of and forces on bodies not in the quantum realm. History ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mass Matrix
In analytical mechanics, the mass matrix is a symmetric matrix that expresses the connection between the time derivative \mathbf\dot q of the generalized coordinate vector of a system and the kinetic energy of that system, by the equation :T = \frac \mathbf^\textsf \mathbf \mathbf where \mathbf^\textsf denotes the transpose of the vector \mathbf. This equation is analogous to the formula for the kinetic energy of a particle with mass and velocity , namely :T = \frac m, \mathbf, ^2 = \frac \mathbf \cdot m\mathbf and can be derived from it, by expressing the position of each particle of the system in terms of . In general, the mass matrix depends on the state , and therefore varies with time. Lagrangian mechanics yields an ordinary differential equation (actually, a system of coupled differential equations) that describes the evolution of a system in terms of an arbitrary vector of generalized coordinates that completely defines the position of every particle in the system. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rheonomous
A mechanical system is rheonomous if its equations of constraints contain the time as an explicit variable. Such constraints are called rheonomic constraints. The opposite of rheonomous is scleronomous. Example: simple 2D pendulum As shown at right, a simple pendulum is a system composed of a weight and a string. The string is attached at the top end to a pivot and at the bottom end to a weight. Being inextensible, the string has a constant length. Therefore, this system is scleronomous; it obeys the scleronomic constraint : \sqrt - L=0\,\!, where (x,\ y)\,\! is the position of the weight and L\,\! the length of the string. The situation changes if the pivot point is moving, e.g. undergoing a simple harmonic motion :x_t=x_0\cos\omega t\,\!, where x_0\,\! is the amplitude, \omega\,\! the angular frequency, and t\,\! time. Although the top end of the string is not fixed, the length of this inextensible string is still a constant. The distance between the top end and the wei ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nonholonomic System
A nonholonomic system in physics and mathematics is a physical system whose state depends on the path taken in order to achieve it. Such a system is described by a set of parameters subject to differential constraints and non-linear constraints, such that when the system evolves along a path in its parameter space (the parameters varying continuously in values) but finally returns to the original set of parameter values at the start of the path, the system itself may not have returned to its original state. Nonholonomic mechanics is an autonomous division of Newtonian mechanics. Details More precisely, a nonholonomic system, also called an ''anholonomic'' system, is one in which there is a continuous closed circuit of the governing parameters, by which the system may be transformed from any given state to any other state. Because the final state of the system depends on the intermediate values of its trajectory through parameter space, the system cannot be represented by a conserv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Holonomic System
In classical mechanics, holonomic constraints are relations between the position variables (and possibly time) that can be expressed in the following form: f(u_1, u_2, u_3,\ldots, u_n, t) = 0 where \ are generalized coordinates that describe the system (in unconstrained configuration space). For example, the motion of a particle constrained to lie on the surface of a sphere is subject to a holonomic constraint, but if the particle is able to fall off the sphere under the influence of gravity, the constraint becomes non-holonomic. For the first case, the holonomic constraint may be given by the equation r^2 - a^2 = 0 where r is the distance from the centre of a sphere of radius a, whereas the second non-holonomic case may be given by r^2 - a^2 \geq 0 Velocity-dependent constraints (also called semi-holonomic constraints) such as f(u_1,u_2,\ldots,u_n,\dot_1,\dot_2,\ldots,\dot_n,t)=0 are not usually holonomic. Holonomic system In classical mechanics a system may be defined a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lagrangian Mechanics
In physics, Lagrangian mechanics is a formulation of classical mechanics founded on the d'Alembert principle of virtual work. It was introduced by the Italian-French mathematician and astronomer Joseph-Louis Lagrange in his presentation to the Turin Academy of Science in 1760 culminating in his 1788 grand opus, ''Mécanique analytique''. Lagrangian mechanics describes a mechanical system as a pair consisting of a configuration space (physics), configuration space ''M'' and a smooth function L within that space called a ''Lagrangian''. For many systems, , where ''T'' and ''V'' are the Kinetic energy, kinetic and Potential energy, potential energy of the system, respectively. The stationary action principle requires that the Action (physics)#Action (functional), action functional of the system derived from ''L'' must remain at a stationary point (specifically, a Maximum and minimum, maximum, Maximum and minimum, minimum, or Saddle point, saddle point) throughout the time evoluti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Simple Harmonic Motion
In mechanics and physics, simple harmonic motion (sometimes abbreviated as ) is a special type of periodic motion an object experiences by means of a restoring force whose magnitude is directly proportional to the distance of the object from an equilibrium position and acts towards the equilibrium position. It results in an oscillation that is described by a sinusoid which continues indefinitely (if uninhibited by friction or any other dissipation of energy). Simple harmonic motion can serve as a mathematical model for a variety of motions, but is typified by the oscillation of a mass on a spring when it is subject to the linear elastic restoring force given by Hooke's law. The motion is sinusoidal in time and demonstrates a single resonant frequency. Other phenomena can be modeled by simple harmonic motion, including the motion of a simple pendulum, although for it to be an accurate model, the net force on the object at the end of the pendulum must be proportional to the dis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pendulum
A pendulum is a device made of a weight suspended from a pivot so that it can swing freely. When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back toward the equilibrium position. When released, the restoring force acting on the pendulum's mass causes it to oscillate about the equilibrium position, swinging back and forth. The time for one complete cycle, a left swing and a right swing, is called the period. The period depends on the length of the pendulum and also to a slight degree on the amplitude, the width of the pendulum's swing. Pendulums were widely used in early mechanical clocks for timekeeping. The regular motion of pendulums was used for timekeeping and was the world's most accurate timekeeping technology until the 1930s. The pendulum clock invented by Christiaan Huygens in 1656 became the world's standard timekeeper, used in homes and offices for 270 years, and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pendulum02
A pendulum is a device made of a weight suspended from a pivot so that it can swing freely. When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back toward the equilibrium position. When released, the restoring force acting on the pendulum's mass causes it to oscillate about the equilibrium position, swinging back and forth. The time for one complete cycle, a left swing and a right swing, is called the period. The period depends on the length of the pendulum and also to a slight degree on the amplitude, the width of the pendulum's swing. Pendulums were widely used in early mechanical clocks for timekeeping. The regular motion of pendulums was used for timekeeping and was the world's most accurate timekeeping technology until the 1930s. The pendulum clock invented by Christiaan Huygens in 1656 became the world's standard timekeeper, used in homes and offices for 270 years, and achi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]