Relational Algebra
In database theory, relational algebra is a theory that uses algebraic structures for modeling data and defining queries on it with well founded semantics (computer science), semantics. The theory was introduced by Edgar F. Codd. The main application of relational algebra is to provide a theoretical foundation for relational databases, particularly query languages for such databases, chief among which is SQL. Relational databases store tabular data represented as relation (database), relations. Queries over relational databases often likewise return tabular data represented as relations. The main purpose of relational algebra is to define Operator (mathematics), operators that transform one or more input relations to an output relation. Given that these operators accept relations as input and produce relations as output, they can be combined and used to express complex queries that transform multiple input relations (whose data are stored in the database) into a single output rela ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Database Theory
Database theory encapsulates a broad range of topics related to the study and research of the theoretical realm of databases and database management systems. Theoretical aspects of data management include, among other areas, the foundations of query languages, Computational complexity theory, computational complexity and expressive power (computer science), expressive power of queries, finite model theory, database design theory, dependency theory (database theory), dependency theory, foundations of concurrency control and database recovery, deductive databases, temporal database, temporal and spatial databases, real-time databases, managing uncertain data and probabilistic databases, and Web data. Most research work has traditionally been based on the relational model, since this model is usually considered the simplest and most foundational model of interest. Corresponding results for other data models, such as object-oriented or semi-structured models, or, more recently, graph ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Set Difference
In set theory, the complement of a set , often denoted by A^c (or ), is the set of elements not in . When all elements in the universe, i.e. all elements under consideration, are considered to be members of a given set , the absolute complement of is the set of elements in that are not in . The relative complement of with respect to a set , also termed the set difference of and , written B \setminus A, is the set of elements in that are not in . Absolute complement Definition If is a set, then the absolute complement of (or simply the complement of ) is the set of elements not in (within a larger set that is implicitly defined). In other words, let be a set that contains all the elements under study; if there is no need to mention , either because it has been previously specified, or it is obvious and unique, then the absolute complement of is the relative complement of in : A^c= U \setminus A = \. The absolute complement of is usually denoted by A^c. Other ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Null (SQL)
In SQL, null or NULL is a special marker used to indicate that a data value does not exist in the database. Introduced by the creator of the Relational model, relational database model, E. F. Codd, SQL null serves to fulfill the requirement that all ''true relational database management systems (Relational database#RDBMS, RDBMS)'' support a representation of "missing information and inapplicable information". Codd also introduced the use of the lowercase Greek omega (ω) symbol to represent null in database theory. In SQL, NULL is a List of SQL reserved words, reserved word used to identify this marker. A null should not be confused with a value of 0. A null indicates a lack of a value, which is not the same as a zero value. For example, consider the question "How many books does Adam own?" The answer may be "zero" (we ''know'' that he owns ''none'') or "null" (we ''do not know'' how many he owns). In a database table, the Column (database), column reporting this answer would ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Negation
In logic, negation, also called the logical not or logical complement, is an operation (mathematics), operation that takes a Proposition (mathematics), proposition P to another proposition "not P", written \neg P, \mathord P, P^\prime or \overline. It is interpreted intuitively as being true when P is false, and false when P is true. For example, if P is "Spot runs", then "not P" is "Spot does not run". An operand of a negation is called a ''negand'' or ''negatum''. Negation is a unary operation, unary logical connective. It may furthermore be applied not only to propositions, but also to notion (philosophy), notions, truth values, or interpretation (logic), semantic values more generally. In classical logic, negation is normally identified with the truth function that takes ''truth'' to ''falsity'' (and vice versa). In intuitionistic logic, according to the Brouwer–Heyting–Kolmogorov interpretation, the negation of a proposition P is the proposition whose proofs are the re ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Logical Disjunction
In logic, disjunction (also known as logical disjunction, logical or, logical addition, or inclusive disjunction) is a logical connective typically notated as \lor and read aloud as "or". For instance, the English language sentence "it is sunny or it is warm" can be represented in logic using the disjunctive formula S \lor W , assuming that S abbreviates "it is sunny" and W abbreviates "it is warm". In classical logic, disjunction is given a truth functional semantics according to which a formula \phi \lor \psi is true unless both \phi and \psi are false. Because this semantics allows a disjunctive formula to be true when both of its disjuncts are true, it is an ''inclusive'' interpretation of disjunction, in contrast with exclusive disjunction. Classical proof theoretical treatments are often given in terms of rules such as disjunction introduction and disjunction elimination. Disjunction has also been given numerous non-classical treatments, motivated by problems ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Logical Conjunction
In logic, mathematics and linguistics, ''and'' (\wedge) is the Truth function, truth-functional operator of conjunction or logical conjunction. The logical connective of this operator is typically represented as \wedge or \& or K (prefix) or \times or \cdot in which \wedge is the most modern and widely used. The ''and'' of a set of operands is true if and only if ''all'' of its operands are true, i.e., A \land B is true if and only if A is true and B is true. An operand of a conjunction is a conjunct. Beyond logic, the term "conjunction" also refers to similar concepts in other fields: * In natural language, the denotation of expressions such as English language, English "Conjunction (grammar), and"; * In programming languages, the Short-circuit evaluation, short-circuit and Control flow, control structure; * In set theory, Intersection (set theory), intersection. * In Lattice (order), lattice theory, logical conjunction (Infimum and supremum, greatest lower bound). Notati ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Selection (relational Algebra)
In relational algebra, a selection (sometimes called a restriction in reference to E.F. Codd's 1970 paper and ''not'', contrary to a popular belief, to avoid confusion with SQL's use of SELECT, since Codd's article predates the existence of SQL) is a unary operation that denotes a subset of a relation. A selection is written as \sigma_( R ) or \sigma_( R ) where: * and are attribute names * is a binary operation in the set \ * is a value constant * is a relation The selection \sigma_( R ) denotes all tuples in for which holds between the and the attribute. The selection \sigma_( R ) denotes all tuples in for which holds between the attribute and the value . For an example, consider the following tables where the first table gives the relation , the second table gives the result of \sigma_( \text ) and the third table gives the result of \sigma_( \text ). More formally the semantics of the selection is defined as follows: : \sigma_( R ) = \ : \sigma_( R ) = \ ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Atomic Formula
In mathematical logic, an atomic formula (also known as an atom or a prime formula) is a formula with no deeper propositional structure, that is, a formula that contains no logical connectives or equivalently a formula that has no strict subformulas. Atoms are thus the simplest well-formed formulas of the logic. Compound formulas are formed by combining the atomic formulas using the logical connectives. The precise form of atomic formulas depends on the logic under consideration; for propositional logic, for example, a propositional variable is often more briefly referred to as an "atomic formula", but, more precisely, a propositional variable is not an atomic formula but a formal expression that denotes an atomic formula. For predicate logic, the atoms are predicate symbols together with their arguments, each argument being a first-order logic#Formation rules, term. In model theory, atomic formulas are merely string (computer science), strings of symbols with a given signature ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Propositional Formula
In propositional logic, a propositional formula is a type of syntactic formula which is well formed. If the values of all variables in a propositional formula are given, it determines a unique truth value. A propositional formula may also be called a propositional expression, a sentence, or a sentential formula. A propositional formula is constructed from simple propositions, such as "five is greater than three" or propositional variables such as ''p'' and ''q'', using connectives or logical operators such as NOT, AND, OR, or IMPLIES; for example: : (''p'' AND NOT ''q'') IMPLIES (''p'' OR ''q''). In mathematics, a propositional formula is often more briefly referred to as a "proposition", but, more precisely, a propositional formula is not a proposition but a formal expression that ''denotes'' a proposition, a formal object under discussion, just like an expression such as "" is not a value, but denotes a value. In some contexts, maintaining the distinction may be of importanc ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Select (SQL)
The SQL SELECT statement returns a result set of rows, from one or more tables. A SELECT statement retrieves zero or more rows from one or more database tables or database views. In most applications, SELECT is the most commonly used data manipulation language (DML) command. As SQL is a declarative programming language, SELECT queries specify a result set, but do not specify how to calculate it. The database translates the query into a " query plan" which may vary between executions, database versions and database software. This functionality is called the " query optimizer" as it is responsible for finding the best possible execution plan for the query, within applicable constraints. The SELECT statement has many optional clauses: * SELECT list is the list of columns or SQL expressions to be returned by the query. This is approximately the relational algebra projection operation. * AS optionally provides an alias for each column or expression in the SELECT list. Thi ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Multiset
In mathematics, a multiset (or bag, or mset) is a modification of the concept of a set that, unlike a set, allows for multiple instances for each of its elements. The number of instances given for each element is called the ''multiplicity'' of that element in the multiset. As a consequence, an infinite number of multisets exist that contain only elements and , but vary in the multiplicities of their elements: * The set contains only elements and , each having multiplicity 1 when is seen as a multiset. * In the multiset , the element has multiplicity 2, and has multiplicity 1. * In the multiset , and both have multiplicity 3. These objects are all different when viewed as multisets, although they are the same set, since they all consist of the same elements. As with sets, and in contrast to ''tuples'', the order in which elements are listed does not matter in discriminating multisets, so and denote the same multiset. To distinguish between sets and multisets, a notat ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Unary Operation
In mathematics, a unary operation is an operation with only one operand, i.e. a single input. This is in contrast to ''binary operations'', which use two operands. An example is any function , where is a set; the function is a unary operation on . Common notations are prefix notation (e.g. ¬, −), postfix notation (e.g. factorial ), functional notation (e.g. or ), and superscripts (e.g. transpose ). Other notations exist as well, for example, in the case of the square root, a horizontal bar extending the square root sign over the argument can indicate the extent of the argument. Examples Absolute value Obtaining the absolute value of a number is a unary operation. This function is defined as , n, = \begin n, & \mbox n\geq0 \\ -n, & \mbox n<0 \end where is the absolute value of . Negation |