Regulator (mathematics)
In mathematics, Dirichlet's unit theorem is a basic result in algebraic number theory due to Peter Gustav Lejeune Dirichlet. It determines the rank of the group of units in the ring of algebraic integers of a number field . The regulator is a positive real number that determines how "dense" the units are. The statement is that the group of units is finitely generated and has rank (maximal number of multiplicatively independent elements) equal to where is the ''number of real embeddings'' and the ''number of conjugate pairs of complex embeddings'' of . This characterisation of and is based on the idea that there will be as many ways to embed in the complex number field as the degree n = : \mathbb/math>; these will either be into the real numbers, or pairs of embeddings related by complex conjugation, so that Note that if is Galois over \mathbb then either or . Other ways of determining and are * use the primitive element theorem to write K = \mathbb(\alpha), an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pell's Equation
Pell's equation, also called the Pell–Fermat equation, is any Diophantine equation of the form x^2 - ny^2 = 1, where ''n'' is a given positive Square number, nonsquare integer, and integer solutions are sought for ''x'' and ''y''. In Cartesian coordinates, the equation is represented by a hyperbola; solutions occur wherever the curve passes through a point whose ''x'' and ''y'' coordinates are both integers, such as the Triviality (mathematics), trivial solution with ''x'' = 1 and ''y'' = 0. Joseph Louis Lagrange proved that, as long as ''n'' is not a square number, perfect square, Pell's equation has infinitely many distinct integer solutions. These solutions may be used to accurately Diophantine approximation, approximate the square root of ''n'' by rational numbers of the form ''x''/''y''. This equation was first studied extensively Indian mathematics, in India starting with Brahmagupta, who found an integer solution to 92x^2 + 1 = y^2 in his '' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fundamental Unit (number Theory)
In algebraic number theory, a fundamental unit is a generator (modulo the root of unity, roots of unity) for the unit group of the Algebraic integer, ring of integers of a number field, when that group has rank of an abelian group, rank 1 (i.e. when the unit group modulo its torsion subgroup is infinite cyclic). Dirichlet's unit theorem shows that the unit group has rank 1 exactly when the number field is a real quadratic field, a complex cubic field, or a totally imaginary number field, totally imaginary quartic field. When the unit group has rank ≥ 1, a basis of it modulo its torsion is called a fundamental system of units. Some authors use the term fundamental unit to mean any element of a fundamental system of units, not restricting to the case of rank 1 (e.g. ). Real quadratic fields For the real quadratic field K=\mathbf(\sqrt) (with ''d'' square-free), the fundamental unit ε is commonly normalized so that (as a real number). Then it is uniquely characterized as the mi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Real Quadratic Field
In algebraic number theory, a quadratic field is an algebraic number field of degree two over \mathbf, the rational numbers. Every such quadratic field is some \mathbf(\sqrt) where d is a (uniquely defined) square-free integer different from 0 and 1. If d>0, the corresponding quadratic field is called a real quadratic field, and, if d<0, it is called an imaginary quadratic field or a complex quadratic field, corresponding to whether or not it is a subfield of the field of the s. Quadratic fields have been studied in great depth, initially as part of the theory of s. There remain some unsolve ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Class Number Formula
In number theory, the class number formula relates many important invariants of an algebraic number field to a special value of its Dedekind zeta function. General statement of the class number formula We start with the following data: * is a number field. * , where denotes the number of real embeddings of , and is the number of complex embeddings of . * is the Dedekind zeta function of . * is the class number, the number of elements in the ideal class group of . * is the regulator of . * is the number of roots of unity contained in . * is the discriminant of the extension . Then: :Theorem (Class Number Formula). converges absolutely for and extends to a meromorphic function defined for all complex with only one simple pole at , with residue :: \lim_ (s-1) \zeta_K(s) = \frac This is the most general "class number formula". In particular cases, for example when is a cyclotomic extension of , there are particular and more refined class number formulas. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Class Number (number Theory)
In mathematics, the ideal class group (or class group) of an algebraic number field K is the quotient group J_K/P_K where J_K is the group of fractional ideals of the ring of integers of K, and P_K is its subgroup of principal ideals. The class group is a measure of the extent to which unique factorization fails in the ring of integers of K. The order of the group, which is finite, is called the class number of K. The theory extends to Dedekind domains and their fields of fractions, for which the multiplicative properties are intimately tied to the structure of the class group. For example, the class group of a Dedekind domain is trivial if and only if the ring is a unique factorization domain. History and origin of the ideal class group Ideal class groups (or, rather, what were effectively ideal class groups) were studied some time before the idea of an ideal was formulated. These groups appeared in the theory of quadratic forms: in the case of binary integral quadratic f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Galois Module
In mathematics, a Galois module is a ''G''-module, with ''G'' being the Galois group of some extension of fields. The term Galois representation is frequently used when the ''G''-module is a vector space over a field or a free module over a ring in representation theory, but can also be used as a synonym for ''G''-module. The study of Galois modules for extensions of local or global fields and their group cohomology is an important tool in number theory. Examples *Given a field ''K'', the multiplicative group (''Ks'')× of a separable closure of ''K'' is a Galois module for the absolute Galois group. Its second cohomology group is isomorphic to the Brauer group of ''K'' (by Hilbert's theorem 90, its first cohomology group is zero). *If ''X'' is a smooth proper scheme over a field ''K'' then the ℓ-adic cohomology groups of its geometric fibre are Galois modules for the absolute Galois group of ''K''. Ramification theory Let ''K'' be a valued field (with valuation denoted ''v ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Localization Of A Ring
Localization or localisation may refer to: Biology * Localization of function, locating psychological functions in the brain or nervous system; see Linguistic intelligence * Localization of sensation, ability to tell what part of the body is affected by touch or other sensation; see Allochiria * Neurologic localization, in neurology, the process of deducing the location of injury based on symptoms and neurological examination * Nuclear localization signal, an amino acid sequence on the surface of a protein which acts like a 'tag' to localize the protein in the cell * Sound localization, a listener's ability to identify the location or origin of a detected sound * Subcellular localization, organization of cellular components into different regions of a cell Engineering and technology * GSM localization, determining the location of an active cell phone or wireless transceiver * Robot localization, figuring out robot's position in an environment * Indoor positioning system, a networ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
S-unit
In mathematics, in the field of algebraic number theory, an ''S''-unit generalises the idea of unit of the ring of integers of the field. Many of the results which hold for units are also valid for ''S''-units. Definition Let ''K'' be a number field with ring of integers ''R''. Let ''S'' be a finite set of prime ideals of ''R''. An element ''x'' of ''K'' is an ''S''-unit if the principal fractional ideal (''x'') is a product of primes in ''S'' (to positive or negative powers). For the ring of rational integers Z one may take ''S'' to be a finite set of prime numbers and define an ''S''-unit to be a rational number whose numerator and denominator are divisible only by the primes in ''S''. Properties The ''S''-units form a multiplicative group containing the units of ''R''. Dirichlet's unit theorem holds for ''S''-units: the group of ''S''-units is finitely generated, with rank (maximal number of multiplicatively independent elements) equal to ''r'' + ''s'', where ''r'' is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Claude Chevalley
Claude Chevalley (; 11 February 1909 – 28 June 1984) was a French mathematician who made important contributions to number theory, algebraic geometry, class field theory, finite group theory and the theory of algebraic groups. He was a founding member of the Bourbaki group. Life His father, Abel Chevalley, was a French diplomat who, jointly with his wife Marguerite Chevalley née Sabatier, wrote ''The Concise Oxford French Dictionary''. Chevalley graduated from the École Normale Supérieure in 1929, where he studied under Émile Picard. He then spent time at the University of Hamburg, studying under Emil Artin and at the University of Marburg, studying under Helmut Hasse. In Germany, Chevalley discovered Japanese mathematics in the person of Shokichi Iyanaga. Chevalley was awarded a doctorate in 1933 from the University of Paris for a thesis on class field theory. When World War II broke out, Chevalley was at Princeton University. After reporting to the French Embass ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Helmut Hasse
Helmut Hasse (; 25 August 1898 – 26 December 1979) was a German mathematician working in algebraic number theory, known for fundamental contributions to class field theory, the application of ''p''-adic numbers to local class field theory and diophantine geometry ( Hasse principle), and to local zeta functions. Life Hasse was born in Kassel, Province of Hesse-Nassau, the son of Judge Paul Reinhard Hasse, also written Haße (12 April 1868 – 1 June 1940, son of Friedrich Ernst Hasse and his wife Anna Von Reinhard) and his wife Margarethe Louise Adolphine Quentin (born 5 July 1872 in Milwaukee, daughter of retail toy merchant Adolph Quentin (b. May 1832, probably Berlin, Kingdom of Prussia) and Margarethe Wehr (b. about 1840, Prussia), then raised in Kassel). After serving in the Imperial German Navy in World War I, he studied at the University of Göttingen, and then at the University of Marburg under Kurt Hensel, writing a dissertation in 1921 containing the Hasse–Mink ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |