HOME
*





Reduced Dynamics
In quantum mechanics, especially in the study of open quantum systems, reduced dynamics refers to the time evolution of a density matrix for a system coupled to an environment. Consider a system and environment initially in the state \rho_ (0) \, (which in general may be entangled) and undergoing unitary evolution given by U_t \,. Then the reduced dynamics of the system alone is simply :\rho_S (t) = \mathrm_E _t \rho_ (0) U_t^\dagger If we assume that the mapping \rho_S(0) \mapsto \rho_S(t) is linear and completely positive, then the reduced dynamics can be represented by a quantum operation. This mean we can express it in the operator-sum form :\rho_S = \sum_i F_i \rho_S (0) F_i^\dagger where the F_i \, are operators on the Hilbert space In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Mechanics
Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, quantum field theory, quantum technology, and quantum information science. Classical physics, the collection of theories that existed before the advent of quantum mechanics, describes many aspects of nature at an ordinary ( macroscopic) scale, but is not sufficient for describing them at small (atomic and subatomic) scales. Most theories in classical physics can be derived from quantum mechanics as an approximation valid at large (macroscopic) scale. Quantum mechanics differs from classical physics in that energy, momentum, angular momentum, and other quantities of a bound system are restricted to discrete values ( quantization); objects have characteristics of both particles and waves (wave–particle duality); and there are limit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Open Quantum System
In physics, an open quantum system is a quantum-mechanical system that interacts with an external quantum system, which is known as the ''environment'' or a ''bath''. In general, these interactions significantly change the dynamics of the system and result in quantum dissipation, such that the information contained in the system is lost to its environment. Because no quantum system is completely isolated from its surroundings, it is important to develop a theoretical framework for treating these interactions in order to obtain an accurate understanding of quantum systems. Techniques developed in the context of open quantum systems have proven powerful in fields such as quantum optics, quantum measurement theory, quantum statistical mechanics, quantum information science, quantum thermodynamics, quantum cosmology, quantum biology, and semi-classical approximations. Quantum system and environment A complete description of a quantum system requires the inclusion of the environmen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Time Evolution
Time evolution is the change of state brought about by the passage of time, applicable to systems with internal state (also called ''stateful systems''). In this formulation, ''time'' is not required to be a continuous parameter, but may be discrete or even finite. In classical physics, time evolution of a collection of rigid bodies is governed by the principles of classical mechanics. In their most rudimentary form, these principles express the relationship between forces acting on the bodies and their acceleration given by Newton's laws of motion. These principles can also be equivalently expressed more abstractly by Hamiltonian mechanics or Lagrangian mechanics. The concept of time evolution may be applicable to other stateful systems as well. For instance, the operation of a Turing machine can be regarded as the time evolution of the machine's control state together with the state of the tape (or possibly multiple tapes) including the position of the machine's read-write ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Density Matrix
In quantum mechanics, a density matrix (or density operator) is a matrix that describes the quantum state of a physical system. It allows for the calculation of the probabilities of the outcomes of any measurement performed upon this system, using the Born rule. It is a generalization of the more usual state vectors or wavefunctions: while those can only represent pure states, density matrices can also represent ''mixed states''. Mixed states arise in quantum mechanics in two different situations: first when the preparation of the system is not fully known, and thus one must deal with a statistical ensemble of possible preparations, and second when one wants to describe a physical system which is entangled with another, without describing their combined state. Density matrices are thus crucial tools in areas of quantum mechanics that deal with mixed states, such as quantum statistical mechanics, open quantum systems, quantum decoherence, and quantum information. Definition ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Entanglement
Quantum entanglement is the phenomenon that occurs when a group of particles are generated, interact, or share spatial proximity in a way such that the quantum state of each particle of the group cannot be described independently of the state of the others, including when the particles are separated by a large distance. The topic of quantum entanglement is at the heart of the disparity between classical and quantum physics: entanglement is a primary feature of quantum mechanics not present in classical mechanics. Measurements of physical properties such as position, momentum, spin, and polarization performed on entangled particles can, in some cases, be found to be perfectly correlated. For example, if a pair of entangled particles is generated such that their total spin is known to be zero, and one particle is found to have clockwise spin on a first axis, then the spin of the other particle, measured on the same axis, is found to be anticlockwise. However, this behavior gives ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Linear Map
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that preserves the operations of vector addition and scalar multiplication. The same names and the same definition are also used for the more general case of modules over a ring; see Module homomorphism. If a linear map is a bijection then it is called a . In the case where V = W, a linear map is called a (linear) '' endomorphism''. Sometimes the term refers to this case, but the term "linear operator" can have different meanings for different conventions: for example, it can be used to emphasize that V and W are real vector spaces (not necessarily with V = W), or it can be used to emphasize that V is a function space, which is a common convention in functional analysis. Sometimes the term ''linear function'' has the same meaning as ''lin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Completely Positive
In mathematics a positive map is a map between C*-algebras that sends positive elements to positive elements. A completely positive map is one which satisfies a stronger, more robust condition. Definition Let A and B be C*-algebras. A linear map \phi: A\to B is called positive map if \phi maps positive elements to positive elements: a\geq 0 \implies \phi(a)\geq 0. Any linear map \phi:A\to B induces another map :\textrm \otimes \phi : \mathbb^ \otimes A \to \mathbb^ \otimes B in a natural way. If \mathbb^\otimes A is identified with the C*-algebra A^ of k\times k-matrices with entries in A, then \textrm\otimes\phi acts as : \begin a_ & \cdots & a_ \\ \vdots & \ddots & \vdots \\ a_ & \cdots & a_ \end \mapsto \begin \phi(a_) & \cdots & \phi(a_) \\ \vdots & \ddots & \vdots \\ \phi(a_) & \cdots & \phi(a_) \end. We say that \phi is k-positive if \textrm_ \otimes \phi is a positive map, and \phi is called completely positive if \phi is k-positive for all k. Properties * Posi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Quantum Operation
In quantum mechanics, a quantum operation (also known as quantum dynamical map or quantum process) is a mathematical formalism used to describe a broad class of transformations that a quantum mechanical system can undergo. This was first discussed as a general stochastic transformation for a density matrix by George Sudarshan. The quantum operation formalism describes not only unitary time evolution or symmetry transformations of isolated systems, but also the effects of measurement and transient interactions with an environment. In the context of quantum computation, a quantum operation is called a quantum channel. Note that some authors use the term "quantum operation" to refer specifically to completely positive (CP) and non-trace-increasing maps on the space of density matrices, and the term " quantum channel" to refer to the subset of those that are strictly trace-preserving. Quantum operations are formulated in terms of the density operator description of a quantum mec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hilbert Space
In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that defines a distance function for which the space is a complete metric space. The earliest Hilbert spaces were studied from this point of view in the first decade of the 20th century by David Hilbert, Erhard Schmidt, and Frigyes Riesz. They are indispensable tools in the theories of partial differential equations, quantum mechanics, Fourier analysis (which includes applications to signal processing and heat transfer), and ergodic theory (which forms the mathematical underpinning of thermodynamics). John von Neumann coined the term ''Hilbert space'' for the abstract concept ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Isaac L
Isaac; grc, Ἰσαάκ, Isaák; ar, إسحٰق/إسحاق, Isḥāq; am, ይስሐቅ is one of the three patriarchs of the Israelites and an important figure in the Abrahamic religions, including Judaism, Christianity, and Islam. He was the son of Abraham and Sarah, the father of Jacob and Esau, and the grandfather of the twelve tribes of Israel. Isaac's name means "he will laugh", reflecting the laughter, in disbelief, of Abraham and Sarah, when told by God that they would have a child., He is the only patriarch whose name was not changed, and the only one who did not move out of Canaan. According to the narrative, he died aged 180, the longest-lived of the three patriarchs. Etymology The anglicized name "Isaac" is a transliteration of the Hebrew name () which literally means "He laughs/will laugh." Ugaritic texts dating from the 13th century BCE refer to the benevolent smile of the Canaanite deity El. Genesis, however, ascribes the laughter to Isaac's parents, Abrah ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]