HOME





Recursively Inseparable Sets
In computability theory, two disjoint sets of natural numbers are called computably inseparable or recursively inseparable if they cannot be "separated" with a computable set.Monk 1976, p. 100 These sets arise in the study of computability theory itself, particularly in relation to \Pi^0_1 classes. Computably inseparable sets also arise in the study of Gödel's incompleteness theorem. Definition The natural numbers are the set \mathbb = \. Given disjoint subsets A and B of \mathbb, a separating set C is a subset of \mathbb such that A \subseteq C and B \cap C = \emptyset (or equivalently, A \subseteq C and B \subseteq C', where C' = \mathbb \setminus C denotes the complement of C). For example, A itself is a separating set for the pair, as is B'. If a pair of disjoint sets A and B has no computable separating set, then the two sets are computably inseparable. Examples If A is a non-computable set, then A and its complement are computably inseparable. However, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Computability Theory
Computability theory, also known as recursion theory, is a branch of mathematical logic, computer science, and the theory of computation that originated in the 1930s with the study of computable functions and Turing degrees. The field has since expanded to include the study of generalized computability and definable set, definability. In these areas, computability theory overlaps with proof theory and effective descriptive set theory. Basic questions addressed by computability theory include: * What does it mean for a function (mathematics), function on the natural numbers to be computable? * How can noncomputable functions be classified into a hierarchy based on their level of noncomputability? Although there is considerable overlap in terms of knowledge and methods, mathematical computability theorists study the theory of relative computability, reducibility notions, and degree structures; those in the computer science field focus on the theory of computational complexity theory ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Computable Set
In computability theory, a set of natural numbers is computable (or decidable or recursive) if there is an algorithm that computes the membership of every natural number in a finite number of steps. A set is noncomputable (or undecidable) if it is not computable. Definition A subset S of the natural numbers is computable if there exists a total computable function f such that: :f(x)=1 if x\in S :f(x)=0 if x\notin S. In other words, the set S is computable if and only if the indicator function \mathbb_ is computable. Examples *Every recursive language is a computable. *Every finite or cofinite subset of the natural numbers is computable. **The empty set is computable. **The entire set of natural numbers is computable. **Every natural number is computable. *The subset of prime numbers is computable. *The set of Gödel numbers is computable. Non-examples *The set of Turing machines that halt is not computable. *The set of pairs of homeomorphic finite simplicial complexes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pi01 Class
The number (; spelled out as pi) is a mathematical constant, approximately equal to 3.14159, that is the ratio of a circle's circumference to its diameter. It appears in many formulae across mathematics and physics, and some of these formulae are commonly used for defining , to avoid relying on the definition of the arc length, length of a curve. The number is an irrational number, meaning that it cannot be expressed exactly as a ratio of two integers, although fractions such as \tfrac are commonly Approximations of π, used to approximate it. Consequently, its decimal representation never ends, nor repeating decimal, enters a permanently repeating pattern. It is a transcendental number, meaning that it cannot be a solution of an algebraic equation involving only finite sums, products, powers, and integers. The transcendence of implies that it is impossible to solve the ancient challenge of squaring the circle with a Compass-and-straightedge construction, compass and stra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complement (set Theory)
In set theory, the complement of a Set (mathematics), set , often denoted by A^c (or ), is the set of Element (mathematics), elements not in . When all elements in the Universe (set theory), universe, i.e. all elements under consideration, are considered to be Element (mathematics), members of a given set , the absolute complement of is the set of elements in that are not in . The relative complement of with respect to a set , also termed the set difference of and , written B \setminus A, is the set of elements in that are not in . Absolute complement Definition If is a set, then the absolute complement of (or simply the complement of ) is the set of elements not in (within a larger set that is implicitly defined). In other words, let be a set that contains all the elements under study; if there is no need to mention , either because it has been previously specified, or it is obvious and unique, then the absolute complement of is the relative complement of in : ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Computable Set
In computability theory, a set of natural numbers is computable (or decidable or recursive) if there is an algorithm that computes the membership of every natural number in a finite number of steps. A set is noncomputable (or undecidable) if it is not computable. Definition A subset S of the natural numbers is computable if there exists a total computable function f such that: :f(x)=1 if x\in S :f(x)=0 if x\notin S. In other words, the set S is computable if and only if the indicator function \mathbb_ is computable. Examples *Every recursive language is a computable. *Every finite or cofinite subset of the natural numbers is computable. **The empty set is computable. **The entire set of natural numbers is computable. **Every natural number is computable. *The subset of prime numbers is computable. *The set of Gödel numbers is computable. Non-examples *The set of Turing machines that halt is not computable. *The set of pairs of homeomorphic finite simplicial complexes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computably Enumerable
In computability theory, a set ''S'' of natural numbers is called computably enumerable (c.e.), recursively enumerable (r.e.), semidecidable, partially decidable, listable, provable or Turing-recognizable if: *There is an algorithm such that the set of input numbers for which the algorithm halts is exactly ''S''. Or, equivalently, *There is an enumeration algorithm, algorithm that enumerates the members of ''S''. That means that its output is a list of all the members of ''S'': ''s''1, ''s''2, ''s''3, ... . If ''S'' is infinite, this algorithm will run forever, but each element of S will be returned after a finite amount of time. Note that these elements do not have to be listed in a particular way, say from smallest to largest. The first condition suggests why the term ''semidecidable'' is sometimes used. More precisely, if a number is in the set, one can ''decide'' this by running the algorithm, but if the number is not in the set, the algorithm can run forever, and no inf ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Partial Computable Function
Computable functions are the basic objects of study in computability theory. Informally, a function is ''computable'' if there is an algorithm that computes the value of the function for every value of its argument. Because of the lack of a precise definition of the concept of algorithm, every formal definition of computability must refer to a specific model of computation. Many such models of computation have been proposed, the major ones being Turing machines, register machines, lambda calculus and general recursive functions. Although these four are of a very different nature, they provide exactly the same class of computable functions, and, for every model of computation that has ever been proposed, the computable functions for such a model are computable for the above four models of computation. The Church–Turing thesis is the unprovable assertion that every notion of computability that can be imagined can compute only functions that are computable in the above sense. Befo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


William Gasarch
William Ian Gasarch ( ; born 1959) is an American computer scientist known for his work in computational complexity theory, computability theory, computational learning theory, and Ramsey theory. He is currently a professor at the University of Maryland Department of Computer Science with an affiliate appointment in Mathematics. Gasarch is a frequent mentor of high school student research projects; one of these, with Jacob Lurie, won the 1996 Westinghouse Science Talent Search for Lurie. He has co-blogged on computational complexity with Lance Fortnow since 2007. He was book review editor for ACM SIGACT NEWS from 1997 to 2015. Education Gasarch received his doctorate in computer science from Harvard in 1985, advised by Harry R. Lewis. His thesis was titled ''Recursion-Theoretic Techniques in Complexity Theory and Combinatorics''. He was hired into a tenure track professorial job at the University of Maryland in the Fall of 1985. He was promoted to associate professor with tenu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gödel Numbering
In mathematical logic, a Gödel numbering is a function that assigns to each symbol and well-formed formula of some formal language a unique natural number, called its Gödel number. Kurt Gödel developed the concept for the proof of his incompleteness theorems. A Gödel numbering can be interpreted as an encoding in which a number is assigned to each symbol of a mathematical notation, after which a sequence of natural numbers can then represent a sequence of symbols. These sequences of natural numbers can again be represented by single natural numbers, facilitating their manipulation in formal theories of arithmetic. Since the publishing of Gödel's paper in 1931, the term "Gödel numbering" or "Gödel code" has been used to refer to more general assignments of natural numbers to mathematical objects. Simplified overview Gödel noted that each statement within a system can be represented by a natural number (its ''Gödel number''). The significance of this was that propert ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Peano Arithmetic
In mathematical logic, the Peano axioms (, ), also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th-century Italian mathematician Giuseppe Peano. These axioms have been used nearly unchanged in a number of metamathematical investigations, including research into fundamental questions of whether number theory is consistent and complete. The axiomatization of arithmetic provided by Peano axioms is commonly called Peano arithmetic. The importance of formalizing arithmetic was not well appreciated until the work of Hermann Grassmann, who showed in the 1860s that many facts in arithmetic could be derived from more basic facts about the successor operation and induction. In 1881, Charles Sanders Peirce provided an axiomatization of natural-number arithmetic. In 1888, Richard Dedekind proposed another axiomatization of natural-number arithmetic, and in 1889, Peano published a simplified version of them a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second-largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]