Raptor Code
In computer science, Raptor codes (''rapid tornado''; see Tornado codes) are the first known class of fountain codes with linear time encoding and decoding. They were invented by Amin Shokrollahi in 2000/2001 and were first published in 2004 as an extended abstract. Raptor codes are a significant theoretical and practical improvement over LT codes, which were the first practical class of fountain codes. Raptor codes, as with fountain codes in general, encode a given source block of data consisting of a number ''k'' of equal size source symbols into a potentially limitless sequence of encoding symbols such that reception of any ''k'' or more encoding symbols allows the source block to be recovered with some non-zero probability. The probability that the source block can be recovered increases with the number of encoding symbols received above ''k'' becoming very close to 1, once the number of received encoding symbols is only very slightly larger than ''k''. For example, with the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Computer Science
Computer science is the study of computation, information, and automation. Computer science spans Theoretical computer science, theoretical disciplines (such as algorithms, theory of computation, and information theory) to Applied science, applied disciplines (including the design and implementation of Computer architecture, hardware and Software engineering, software). Algorithms and data structures are central to computer science. The theory of computation concerns abstract models of computation and general classes of computational problem, problems that can be solved using them. The fields of cryptography and computer security involve studying the means for secure communication and preventing security vulnerabilities. Computer graphics (computer science), Computer graphics and computational geometry address the generation of images. Programming language theory considers different ways to describe computational processes, and database theory concerns the management of re ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
List Of ATSC Standards
Below are the published ATSC standards for ATSC digital television service, issued by the Advanced Television Systems Committee. *A/49: Ghost Canceling Reference Signal for NTSC (for adjacent-channel interference or co-channel interference with analog NTSC stations nearby) *A/52B: audio data compression (Dolby AC-3 and E-AC-3) *A/53E: "ATSC Digital Television Standard" (the primary document governing the standard) *A/55: "Program Guide for Digital Television" (now deprecated in favor of A/65 PSIP) *A/56: "System Information for Digital Television" (now deprecated in favor of A/65 PSIP) *A/57A: "Content Identification and Labeling for ATSC Transport" (for assigning a unique digital number to each episode of each TV show, to assist DVRs) *A/63: "Standard for Coding 25/50 Hz Video" (for use with PAL and SECAM-originated programming) *A/64A "Transmission Measurement and Compliance for Digital Television" *A/65C: "Program and System Information Protocol for Terrestrial Broadcast and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fountain Codes
In coding theory, fountain codes (also known as rateless erasure codes) are a class of erasure codes with the property that a potentially limitless sequence of encoding symbols can be generated from a given set of source symbols such that the original source symbols can ideally be recovered from any subset of the encoding symbols of size equal to or only slightly larger than the number of source symbols. The term ''fountain'' or ''rateless'' refers to the fact that these codes do not exhibit a fixed code rate. A fountain code is optimal if the original ''k'' source symbols can be recovered from any ''k'' successfully received encoding symbols (i.e., excluding those that were erased). Fountain codes are known that have efficient encoding and decoding algorithms and that allow the recovery of the original ''k'' source symbols from any ''k’'' of the encoding symbols with high probability, where ''k’'' is just slightly larger than ''k''. LT codes were the first practical realizatio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Erasure Code
In coding theory, an erasure code is a forward error correction (FEC) code under the assumption of bit erasures (rather than bit errors), which transforms a message of ''k'' symbols into a longer message (code word) with ''n'' symbols such that the original message can be recovered from a subset of the ''n'' symbols. The fraction ''r'' = ''k''/''n'' is called the code rate. The fraction ''k’/k'', where ''k’'' denotes the number of symbols required for recovery, is called reception efficiency. The recovery algorithm expects that it is known which of the ''n'' symbols are lost. History Erasure coding was invented by Irving Reed and Gustave Solomon in 1960. There are many different erasure coding schemes. The most popular erasure codes are Reed-Solomon coding, Low-density parity-check code (LDPC codes), and Turbo codes. As of 2023, modern data storage systems can be designed to tolerate the complete failure of a few disks without data loss, using one of 3 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dynamic Adaptive Streaming Over HTTP
Dynamic Adaptive Streaming over HTTP (DASH), also known as MPEG-DASH, is an adaptive bitrate streaming technique that enables high quality streaming of media content over the Internet delivered from conventional HTTP web servers. Similar to Apple's HTTP Live Streaming (HLS) solution, MPEG-DASH works by breaking the content into a sequence of small segments, which are served over HTTP. An early HTTP web server based streaming system called SProxy was developed and deployed in the Hewlett Packard Laboratories in 2006. It showed how to use HTTP range requests to break the content into small segments. SProxy shows the effectiveness of segment based streaming, gaining best Internet penetration due to the wide deployment of firewalls, and reducing the unnecessary traffic transmission if a user chooses to terminate the streaming session earlier before reaching the end. Each segment contains a short interval of playback time of content that is potentially many hours in duration, such as ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gaussian Elimination
In mathematics, Gaussian elimination, also known as row reduction, is an algorithm for solving systems of linear equations. It consists of a sequence of row-wise operations performed on the corresponding matrix of coefficients. This method can also be used to compute the rank of a matrix, the determinant of a square matrix, and the inverse of an invertible matrix. The method is named after Carl Friedrich Gauss (1777–1855). To perform row reduction on a matrix, one uses a sequence of elementary row operations to modify the matrix until the lower left-hand corner of the matrix is filled with zeros, as much as possible. There are three types of elementary row operations: * Swapping two rows, * Multiplying a row by a nonzero number, * Adding a multiple of one row to another row. Using these operations, a matrix can always be transformed into an upper triangular matrix (possibly bordered by rows or columns of zeros), and in fact one that is in row echelon form. Once all of the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
LT Code
In computer science, Luby transform codes (LT codes) are the first class of practical fountain codes that are near-optimal erasure correcting codes. They were invented by Michael Luby in 1998 and published in 2002. Like some other fountain codes, LT codes depend on sparse bipartite graphs to trade reception overhead for encoding and decoding speed. The distinguishing characteristic of LT codes is in employing a particularly simple algorithm based on the exclusive or operation (\oplus) to encode and decode the message.The ''exclusive or'' (XOR) operation, symbolized by ⊕, has the very useful property that ''A'' ⊕ ''A'' = 0, where ''A'' is an arbitrary string of bits. LT codes are ''rateless'' because the encoding algorithm can in principle produce an infinite number of message packets (i.e., the percentage of packets that must be received to decode the message can be arbitrarily small). They are ''erasure correcting codes'' because they can be used to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hamming Code
In computer science and telecommunications, Hamming codes are a family of linear error-correcting codes. Hamming codes can detect one-bit and two-bit errors, or correct one-bit errors without detection of uncorrected errors. By contrast, the simple parity code cannot correct errors, and can detect only an odd number of bits in error. Hamming codes are perfect codes, that is, they achieve the highest possible rate for codes with their block length and minimum distance of three. Richard W. Hamming invented Hamming codes in 1950 as a way of automatically correcting errors introduced by punched card readers. In his original paper, Hamming elaborated his general idea, but specifically focused on the Hamming(7,4) code which adds three parity bits to four bits of data. In mathematical terms, Hamming codes are a class of binary linear code. For each integer there is a code-word with block length and message length . Hence the rate of Hamming codes is , which is the highest p ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Low Density Parity Check Code
Low-density parity-check (LDPC) codes are a class of error correction codes which (together with the closely-related turbo codes) have gained prominence in coding theory and information theory since the late 1990s. The codes today are widely used in applications ranging from wireless communications to flash-memory storage. Together with turbo codes, they sparked a revolution in coding theory, achieving order-of-magnitude improvements in performance compared to traditional error correction codes. Central to the performance of LDPC codes is their adaptability to the iterative belief propagation decoding algorithm. Under this algorithm, they can be designed to approach theoretical limits ( capacities) of many channels at low computation costs. Theoretically, analysis of LDPC codes focuses on sequences of codes of fixed code rate and increasing block length. These sequences are typically tailored to a set of channels. For appropriately designed sequences, the decoding error u ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Binary Gray Sequence
The reflected binary code (RBC), also known as reflected binary (RB) or Gray code after Frank Gray, is an ordering of the binary numeral system such that two successive values differ in only one bit (binary digit). For example, the representation of the decimal value "1" in binary would normally be "", and "2" would be "". In Gray code, these values are represented as "" and "". That way, incrementing a value from 1 to 2 requires only one bit to change, instead of two. Gray codes are widely used to prevent spurious output from electromechanical switches and to facilitate error correction in digital communications such as digital terrestrial television and some cable TV systems. The use of Gray code in these devices helps simplify logic operations and reduce errors in practice. Function Many devices indicate position by closing and opening switches. If that device uses natural binary codes, positions 3 and 4 are next to each other but all three bits of the binary representa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Erasure Code
In coding theory, an erasure code is a forward error correction (FEC) code under the assumption of bit erasures (rather than bit errors), which transforms a message of ''k'' symbols into a longer message (code word) with ''n'' symbols such that the original message can be recovered from a subset of the ''n'' symbols. The fraction ''r'' = ''k''/''n'' is called the code rate. The fraction ''k’/k'', where ''k’'' denotes the number of symbols required for recovery, is called reception efficiency. The recovery algorithm expects that it is known which of the ''n'' symbols are lost. History Erasure coding was invented by Irving Reed and Gustave Solomon in 1960. There are many different erasure coding schemes. The most popular erasure codes are Reed-Solomon coding, Low-density parity-check code (LDPC codes), and Turbo codes. As of 2023, modern data storage systems can be designed to tolerate the complete failure of a few disks without data loss, using one of 3 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
ATSC 3
ATSC 3.0 is a major version of the ATSC standards for terrestrial television broadcasting created by the Advanced Television Systems Committee (ATSC). The standards are designed to offer support for newer technologies, including High Efficiency Video Coding (HEVC) for video channels of up to 4K resolution (2160p) at 120 frames per second, wide color gamut, high dynamic range, Dolby AC-4 and MPEG-H 3D Audio, datacasting capabilities, and more robust mobile television support. The capabilities have also been foreseen as a way to enable finer public alerting and targeted advertising. The first major deployment of ATSC 3.0 occurred in South Korea in May 2017, in preparation for the 2018 Winter Olympics. In November 2017, the FCC passed rules allowing American broadcast stations to voluntarily adopt ATSC 3.0 ("Next Gen TV"), provided that full-power stations preserve the availability of their programming in their city of license via legacy ATSC signals; adoption is being steer ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |