Radical Of An Integer
In number theory, the radical of a positive integer ''n'' is defined as the product of the distinct prime numbers dividing ''n''. Each prime factor of ''n'' occurs exactly once as a factor of this product: \displaystyle\mathrm(n)=\prod_p The radical plays a central role in the statement of the abc conjecture. Examples Radical numbers for the first few positive integers are : 1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 6, 13, 14, 15, 2, 17, 6, 19, 10, 21, 22, 23, 6, 5, 26, 3, 14, 29, 30, 31, 2, 33, 34, 35, 6, 37, 38, 39, 10, 41, 42, 43, 22, 15, 46, 47, 6, 7, 10, ... . For example, 504 = 2^3 \cdot 3^2 \cdot 7 and therefore \operatorname(504) = 2 \cdot 3 \cdot 7 = 42 Properties The function \mathrm is multiplicative (but not completely multiplicative). The radical of any integer n is the largest square-free divisor of n and so also described as the square-free kernel of n. There is no known polynomial-time algorithm for computing the square-free part of an integer. The definitio ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
![]() |
Number Theory
Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example, rational numbers), or defined as generalizations of the integers (for example, algebraic integers). Integers can be considered either in themselves or as solutions to equations (Diophantine geometry). Questions in number theory can often be understood through the study of Complex analysis, analytical objects, such as the Riemann zeta function, that encode properties of the integers, primes or other number-theoretic objects in some fashion (analytic number theory). One may also study real numbers in relation to rational numbers, as for instance how irrational numbers can be approximated by fractions (Diophantine approximation). Number theory is one of the oldest branches of mathematics alongside geometry. One quirk of number theory is ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
Positive Number
In mathematics, the sign of a real number is its property of being either positive, negative, or 0. Depending on local conventions, zero may be considered as having its own unique sign, having no sign, or having both positive and negative sign. In some contexts, it makes sense to distinguish between a positive and a negative zero. In mathematics and physics, the phrase "change of sign" is associated with exchanging an object for its additive inverse (multiplication with −1, negation), an operation which is not restricted to real numbers. It applies among other objects to vectors, matrices, and complex numbers, which are not prescribed to be only either positive, negative, or zero. The word "sign" is also often used to indicate binary aspects of mathematical or scientific objects, such as odd and even ( sign of a permutation), sense of orientation or rotation ( cw/ccw), one sided limits, and other concepts described in below. Sign of a number Numbers from various number ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
Integer
An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative integers. The set (mathematics), set of all integers is often denoted by the boldface or blackboard bold The set of natural numbers \mathbb is a subset of \mathbb, which in turn is a subset of the set of all rational numbers \mathbb, itself a subset of the real numbers \mathbb. Like the set of natural numbers, the set of integers \mathbb is Countable set, countably infinite. An integer may be regarded as a real number that can be written without a fraction, fractional component. For example, 21, 4, 0, and −2048 are integers, while 9.75, , 5/4, and Square root of 2, are not. The integers form the smallest Group (mathematics), group and the smallest ring (mathematics), ring containing the natural numbers. In algebraic number theory, the ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
Prime Number
A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, or , involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorization, factorized as a product of primes that is unique up to their order. The property of being prime is called primality. A simple but slow primality test, method of checking the primality of a given number , called trial division, tests whether is a multiple of any integer between 2 and . Faster algorithms include the Miller–Rabin primality test, which is fast but has a small chance of error ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
Abc Conjecture
ABC are the first three letters of the Latin script. ABC or abc may also refer to: Arts, entertainment and media Broadcasting * Aliw Broadcasting Corporation, Philippine broadcast company * American Broadcasting Company, a commercial American TV broadcaster ** Disney–ABC Television Group, the former name of the parent organization of ABC * Australian Broadcasting Corporation, one of the national publicly funded broadcasters of Australia ** ABC Television (Australian TV network), the national television network of the Australian Broadcasting Corporation *** ABC TV (Australian TV channel), the flagship TV station of the Australian Broadcasting Corporation *** ABC Canberra (TV station), Canberra, and other ABC TV local stations in state capitals *** ABC Australia (Southeast Asian TV channel), an international pay TV channel * ABC Radio (other), several radio stations * Associated Broadcasting Corporation, the former name of TV5 Network, Inc., a Philippine media com ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
Multiplicative Function
In number theory, a multiplicative function is an arithmetic function f of a positive integer n with the property that f(1)=1 and f(ab) = f(a)f(b) whenever a and b are coprime. An arithmetic function is said to be completely multiplicative (or totally multiplicative) if f(1)=1 and f(ab) = f(a)f(b) holds ''for all'' positive integers a and b, even when they are not coprime. Examples Some multiplicative functions are defined to make formulas easier to write: * 1(n): the constant function defined by 1(n)=1 * \operatorname(n): the identity function, defined by \operatorname(n)=n * \operatorname_k(n): the power functions, defined by \operatorname_k(n)=n^k for any complex number k. As special cases we have ** \operatorname_0(n)=1(n), and ** \operatorname_1(n)=\operatorname(n). * \varepsilon(n): the function defined by \varepsilon(n)=1 if n=1 and 0 otherwise; this is the unit function, so called because it is the multiplicative identity for Dirichlet convolution. Sometimes ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
Completely Multiplicative Function
In number theory, functions of positive integers which respect products are important and are called completely multiplicative functions or totally multiplicative functions. A weaker condition is also important, respecting only products of coprime numbers, and such functions are called multiplicative functions. Outside of number theory, the term "multiplicative function" is often taken to be synonymous with "completely multiplicative function" as defined in this article. Definition A completely multiplicative function (or totally multiplicative function) is an arithmetic function (that is, a function whose Domain of a function, domain is the natural numbers), such that ''f''(1) = 1 and ''f''(''ab'') = ''f''(''a'')''f''(''b'') holds ''for all'' positive integers ''a'' and ''b''. In logic notation: f(1) = 1 and \forall a, b \in \text(f), f(ab) = f(a)f(b). Without the requirement that ''f''(1) = 1, one could still have ''f''(1) = 0, but then ''f''(''a'') = 0 for all positive intege ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
Square-free Integer
In mathematics, a square-free integer (or squarefree integer) is an integer which is divisible by no square number other than 1. That is, its prime factorization has exactly one factor for each prime that appears in it. For example, is square-free, but is not, because 18 is divisible by . The smallest positive square-free numbers are Square-free factorization Every positive integer n can be factored in a unique way as n=\prod_^k q_i^i, where the q_i different from one are square-free integers that are pairwise coprime. This is called the ''square-free factorization'' of . To construct the square-free factorization, let n=\prod_^h p_j^ be the prime factorization of n, where the p_j are distinct prime numbers. Then the factors of the square-free factorization are defined as q_i=\prod_p_j. An integer is square-free if and only if q_i=1 for all i > 1. An integer greater than one is the kth power of another integer if and only if k is a divisor of all i such that q_i\neq 1. Th ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
Coprime
In number theory, two integers and are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. Consequently, any prime number that divides does not divide , and vice versa. This is equivalent to their greatest common divisor (GCD) being 1. One says also ''is prime to'' or ''is coprime with'' . The numbers 8 and 9 are coprime, despite the fact that neither—considered individually—is a prime number, since 1 is their only common divisor. On the other hand, 6 and 9 are not coprime, because they are both divisible by 3. The numerator and denominator of a reduced fraction are coprime, by definition. Notation and testing When the integers and are coprime, the standard way of expressing this fact in mathematical notation is to indicate that their greatest common divisor is one, by the formula or . In their 1989 textbook '' Concrete Mathematics'', Ronald Graham, Donald Knuth, and Oren Patashnik proposed an alte ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
Nilpotent
In mathematics, an element x of a ring (mathematics), ring R is called nilpotent if there exists some positive integer n, called the index (or sometimes the degree), such that x^n=0. The term, along with its sister Idempotent (ring theory), idempotent, was introduced by Benjamin Peirce in the context of his work on the classification of algebras. Examples *This definition can be applied in particular to square matrix, square matrices. The matrix :: A = \begin 0 & 1 & 0\\ 0 & 0 & 1\\ 0 & 0 & 0 \end :is nilpotent because A^3=0. See nilpotent matrix for more. * In the factor ring \Z/9\Z, the equivalence class of 3 is nilpotent because 32 is Congruence relation, congruent to 0 Modular arithmetic, modulo 9. * Assume that two elements a and b in a ring R satisfy ab=0. Then the element c=ba is nilpotent as \beginc^2&=(ba)^2\\ &=b(ab)a\\ &=0.\\ \end An example with matrices (for ''a'', ''b''):A = \begin 0 & 1\\ 0 & 1 \end, \;\; B =\begin 0 & 1\\ ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
Finite Ring
In mathematics, more specifically abstract algebra, a finite ring is a ring that has a finite number of elements. Every finite field is an example of a finite ring, and the additive part of every finite ring is an example of an abelian finite group, but the concept of finite rings in their own right has a more recent history. Although rings have more structure than groups do, the theory of finite rings is simpler than that of finite groups. For instance, the classification of finite simple groups was one of the major breakthroughs of 20th century mathematics, its proof spanning thousands of journal pages. On the other hand, it has been known since 1907 that any finite simple ring is isomorphic to the ring \mathrm_n(\mathbb_q) – the ''n''-by-''n'' matrices over a finite field of order ''q'' (as a consequence of Wedderburn's theorems, described below). The number of rings with ''m'' elements, for ''m'' a natural number, is listed under in the On-Line Encyclopedia of Integer Seq ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
Dirichlet Series
In mathematics, a Dirichlet series is any series of the form \sum_^\infty \frac, where ''s'' is complex, and a_n is a complex sequence. It is a special case of general Dirichlet series. Dirichlet series play a variety of important roles in analytic number theory. The most usually seen definition of the Riemann zeta function is a Dirichlet series, as are the Dirichlet L-functions. Specifically, the Riemann zeta function ''ζ(s)'' is the Dirichlet series of the constant unit function ''u(n)'', namely: \zeta(s) = \sum_^\infty \frac = \sum_^\infty \frac = D(u, s), where ''D(u, s)'' denotes the Dirichlet series of ''u(n)''. It is conjectured that the Selberg class of series obeys the generalized Riemann hypothesis. The series is named in honor of Peter Gustav Lejeune Dirichlet. Combinatorial importance Dirichlet series can be used as generating series for counting weighted sets of objects with respect to a weight which is combined multiplicatively when taking Cartesian product ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |