HOME
*





Quasi-Hopf Algebra
A quasi-Hopf algebra is a generalization of a Hopf algebra, which was defined by the Russian mathematician Vladimir Drinfeld in 1989. A ''quasi-Hopf algebra'' is a quasi-bialgebra \mathcal = (\mathcal, \Delta, \varepsilon, \Phi) for which there exist \alpha, \beta \in \mathcal and a bijection, bijective antihomomorphism ''S'' (Antipode_(algebra), antipode) of \mathcal such that : \sum_i S(b_i) \alpha c_i = \varepsilon(a) \alpha : \sum_i b_i \beta S(c_i) = \varepsilon(a) \beta for all a \in \mathcal and where :\Delta(a) = \sum_i b_i \otimes c_i and :\sum_i X_i \beta S(Y_i) \alpha Z_i = \mathbb, :\sum_j S(P_j) \alpha Q_j \beta S(R_j) = \mathbb. where the expansions for the quantities \Phiand \Phi^ are given by :\Phi = \sum_i X_i \otimes Y_i \otimes Z_i and :\Phi^{-1}= \sum_j P_j \otimes Q_j \otimes R_j. As for a quasi-bialgebra, the property of being quasi-Hopf is preserved under quasi-bialgebra#Twisting, twisting. Usage Quasi-Hopf algebras form the basis of the study ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hopf Algebra
Hopf is a German surname. Notable people with the surname include: * Eberhard Hopf (1902–1983), Austrian mathematician * Hans Hopf (1916–1993), German tenor * Heinz Hopf (1894–1971), German mathematician * Heinz Hopf (actor) (1934–2001), Swedish actor * Ludwig Hopf (1884–1939), German physicist * Maria Hopf (1914-2008), German botanist and archaeologist {{surname, Hopf German-language surnames ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Statistical Mechanics
In physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. It does not assume or postulate any natural laws, but explains the macroscopic behavior of nature from the behavior of such ensembles. Statistical mechanics arose out of the development of classical thermodynamics, a field for which it was successful in explaining macroscopic physical properties—such as temperature, pressure, and heat capacity—in terms of microscopic parameters that fluctuate about average values and are characterized by probability distributions. This established the fields of statistical thermodynamics and statistical physics. The founding of the field of statistical mechanics is generally credited to three physicists: *Ludwig Boltzmann, who developed the fundamental interpretation of entropy in terms of a collection of microstates *James Clerk Maxwell, who developed models of probability ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quasi-triangular Quasi-Hopf Algebra
A quasi-triangular quasi-Hopf algebra is a specialized form of a quasi-Hopf algebra defined by the Ukrainian mathematician Vladimir Drinfeld in 1989. It is also a generalized form of a quasi-triangular Hopf algebra. A quasi-triangular quasi-Hopf algebra is a set \mathcal = (\mathcal, R, \Delta, \varepsilon, \Phi) where \mathcal = (\mathcal, \Delta, \varepsilon, \Phi) is a quasi-Hopf algebra and R \in \mathcal known as the R-matrix, is an invertible element such that : R \Delta(a) = \sigma \circ \Delta(a) R for all a \in \mathcal, where \sigma\colon \mathcal \rightarrow \mathcal is the switch map given by x \otimes y \rightarrow y \otimes x, and : (\Delta \otimes \operatorname)R = \Phi_R_\Phi_^R_\Phi_ : (\operatorname \otimes \Delta)R = \Phi_^R_\Phi_R_\Phi_^ where \Phi_ = x_a \otimes x_b \otimes x_c and \Phi_= \Phi = x_1 \otimes x_2 \otimes x_3 \in \mathcal. The quasi-Hopf algebra becomes ''triangular'' if in addition, R_R_=1. The twisting of \mathcal by F \in \mathcal is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Quasitriangular Hopf Algebra
In mathematics, a Hopf algebra, ''H'', is quasitriangularMontgomery & Schneider (2002), p. 72 if there exists an invertible element, ''R'', of H \otimes H such that :*R \ \Delta(x)R^ = (T \circ \Delta)(x) for all x \in H, where \Delta is the coproduct on ''H'', and the linear map T : H \otimes H \to H \otimes H is given by T(x \otimes y) = y \otimes x, :*(\Delta \otimes 1)(R) = R_ \ R_, :*(1 \otimes \Delta)(R) = R_ \ R_, where R_ = \phi_(R), R_ = \phi_(R), and R_ = \phi_(R), where \phi_ : H \otimes H \to H \otimes H \otimes H, \phi_ : H \otimes H \to H \otimes H \otimes H, and \phi_ : H \otimes H \to H \otimes H \otimes H, are algebra morphisms determined by :\phi_(a \otimes b) = a \otimes b \otimes 1, :\phi_(a \otimes b) = a \otimes 1 \otimes b, :\phi_(a \otimes b) = 1 \otimes a \otimes b. ''R'' is called the R-matrix. As a consequence of the properties of quasitriangularity, the R-matrix, ''R'', is a solution of the Yang–Baxter equation (and so a module ''V'' of ''H' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quantum Inverse Scattering Method
In quantum physics, the quantum inverse scattering method is a method for solving integrable models in 1+1 dimensions, introduced by L. D. Faddeev in 1979. The quantum inverse scattering method relates two different approaches: #the Bethe ansatz, a method of solving integrable quantum models in one space and one time dimension; #the Inverse scattering transform, a method of solving classical integrable differential equations of the evolutionary type. This method led to the formulation of quantum groups. Especially interesting is the Yangian, and the center of the Yangian is given by the quantum determinant. An important concept in the Inverse scattering transform is the Lax representation; the quantum inverse scattering method starts by the quantization of the Lax representation and reproduces the results of the Bethe ansatz. In fact, it allows the Bethe ansatz to be written in a new form: the ''algebraic Bethe ansatz''.cf. e.g. the lectures by N.A. Slavnov, This led to f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Integrable Model
In mathematics, integrability is a property of certain dynamical systems. While there are several distinct formal definitions, informally speaking, an integrable system is a dynamical system with sufficiently many conserved quantities, or first integrals, such that its behaviour has far fewer degrees of freedom than the dimensionality of its phase space; that is, its evolution is restricted to a submanifold within its phase space. Three features are often referred to as characterizing integrable systems: * the existence of a ''maximal'' set of conserved quantities (the usual defining property of complete integrability) * the existence of algebraic invariants, having a basis in algebraic geometry (a property known sometimes as algebraic integrability) * the explicit determination of solutions in an explicit functional form (not an intrinsic property, but something often referred to as solvability) Integrable systems may be seen as very different in qualitative character from more ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Heisenberg XXZ Model
Werner Karl Heisenberg (; ; 5 December 1901 – 1 February 1976) was a German theoretical physicist, one of the main pioneers of the theory of quantum mechanics and a principal scientist in the German nuclear weapons program, Nazi nuclear weapons program during World War II. He published his Umdeutung paper, ''Umdeutung'' paper in 1925, a major reinterpretation of old quantum theory. In the subsequent series of papers with Max Born and Pascual Jordan, during the same year, his matrix mechanics, matrix formulation of quantum mechanics was substantially elaborated. He is known for the uncertainty principle, which he published in 1927. Heisenberg was awarded the 1932 Nobel Prize in Physics "for the creation of quantum mechanics". Heisenberg also made contributions to the theories of the Fluid dynamics, hydrodynamics of turbulent flows, the atomic nucleus, ferromagnetism, cosmic rays, and subatomic particles. He introduced the concept of a wave function collapse. He was also instrum ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Yang–Baxter Equation
In physics, the Yang–Baxter equation (or star–triangle relation) is a consistency equation which was first introduced in the field of statistical mechanics. It depends on the idea that in some scattering situations, particles may preserve their momentum while changing their quantum internal states. It states that a matrix R, acting on two out of three objects, satisfies :(\check\otimes \mathbf)(\mathbf\otimes \check)(\check\otimes \mathbf) =(\mathbf\otimes \check)(\check \otimes \mathbf)(\mathbf\otimes \check) In one dimensional quantum systems, R is the scattering matrix and if it satisfies the Yang–Baxter equation then the system is integrable. The Yang–Baxter equation also shows up when discussing knot theory and the braid groups where R corresponds to swapping two strands. Since one can swap three strands two different ways, the Yang–Baxter equation enforces that both paths are the same. It takes its name from independent work of C. N. Yang from 1968, and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




R-matrix
The term R-matrix has several meanings, depending on the field of study. The term R-matrix is used in connection with the Yang–Baxter equation. This is an equation which was first introduced in the field of statistical mechanics, taking its name from independent work of C. N. Yang and R. J. Baxter. The classical R-matrix arises in the definition of the classical Yang–Baxter equation. In quasitriangular Hopf algebra, the R-matrix is a solution of the Yang–Baxter equation. The numerical modeling of diffraction gratings in optical science can be performed using the R-matrix propagation algorithm. R-matrix method in quantum mechanics There is a method in computational quantum mechanics for studying scattering known as the R-matrix. This method was originally formulated for studying resonances in nuclear scattering by Wigner and Eisenbud. Using that work as a basis, an R-matrix method was developed for electron, positron and photon scattering by atoms. This appro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vladimir Drinfeld
Vladimir Gershonovich Drinfeld ( uk, Володи́мир Ге́ршонович Дрінфельд; russian: Влади́мир Ге́ршонович Дри́нфельд; born February 14, 1954), surname also romanized as Drinfel'd, is a renowned mathematician from the former USSR, who emigrated to the United States and is currently working at the University of Chicago. Drinfeld's work connected algebraic geometry over finite fields with number theory, especially the theory of automorphic forms, through the notions of elliptic module and the theory of the geometric Langlands correspondence. Drinfeld introduced the notion of a quantum group (independently discovered by Michio Jimbo at the same time) and made important contributions to mathematical physics, including the ADHM construction of instantons, algebraic formalism of the quantum inverse scattering method, and the Drinfeld–Sokolov reduction in the theory of solitons. He was awarded the Fields Medal in 1990. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quantum Affine Algebras
In mathematics, a quantum affine algebra (or affine quantum group) is a Hopf algebra that is a ''q''-deformation of the universal enveloping algebra of an affine Lie algebra. They were introduced independently by and as a special case of their general construction of a quantum group from a Cartan matrix. One of their principal applications has been to the theory of solvable lattice models in quantum statistical mechanics, where the Yang–Baxter equation occurs with a spectral parameter. Combinatorial aspects of the representation theory of quantum affine algebras can be described simply using crystal bases A crystal base for a representation of a quantum group on a \Q(v)-vector space is not a base of that vector space but rather a \Q-base of L/vL where L is a \Q(v)-lattice in that vector spaces. Crystal bases appeared in the work of and also in the ..., which correspond to the degenerate case when the deformation parameter ''q'' vanishes and the Hamiltonian of the associat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]