Quantum Cramér–Rao Bound
The quantum Cramér–Rao bound is the quantum analogue of the classical Cramér–Rao bound. It bounds the achievable precision in parameter estimation with a quantum system: (\Delta \theta)^2 \ge \frac 1 , where m is the number of independent repetitions, and F_ varrho,H/math> is the quantum Fisher information. Here, \varrho is the state of the system and H is the Hamiltonian of the system. When considering a unitary dynamics of the type \varrho(\theta)=\exp(-iH\theta)\varrho_0\exp(+iH\theta), where \varrho_0 is the initial state of the system, \theta is the parameter to be estimated based on measurements on \varrho(\theta). Simple derivation from the Heisenberg uncertainty relation Let us consider the decomposition of the density matrix to pure components as \varrho=\sum_k p_k \vert\Psi_k\rangle\langle\Psi_k\vert. The Heisenberg uncertainty relation is valid for all \vert\Psi_k\rangle (\Delta A)^2_(\Delta B)^2_\ge \frac 1 4 , \langle i ,B\rangle_, ^2. From these, emplo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cramér–Rao Bound
In estimation theory and statistics, the Cramér–Rao bound (CRB) relates to estimation of a deterministic (fixed, though unknown) parameter. The result is named in honor of Harald Cramér and Calyampudi Radhakrishna Rao, but has also been derived independently by Maurice Fréchet, Georges Darmois, and by Alexander Aitken and Harold Silverstone. It is also known as Fréchet-Cramér–Rao or Fréchet-Darmois-Cramér-Rao lower bound. It states that the precision of any unbiased estimator is at most the Fisher information; or (equivalently) the reciprocal of the Fisher information is a lower bound on its variance. An unbiased estimator that achieves this bound is said to be (fully) '' efficient''. Such a solution achieves the lowest possible mean squared error among all unbiased methods, and is, therefore, the minimum variance unbiased (MVU) estimator. However, in some cases, no unbiased technique exists which achieves the bound. This may occur either if for any unbiased ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quantum Fisher Information
The quantum Fisher information is a central quantity in quantum metrology and is the quantum analogue of the classical Fisher information. It is one of the central quantities used to qualify the utility of an input state, especially in Mach–Zehnder (or, equivalently, Ramsey) interferometer-based phase or parameter estimation. It is shown that the quantum Fisher information can also be a sensitive probe of a quantum phase transition (e.g. recognizing the superradiant quantum phase transition in the Dicke model). The quantum Fisher information F_[\varrho,A] of a quantum state, state \varrho with respect to the quantum observable, observable A is defined as : F_[\varrho,A]=2\sum_ \frac \vert \langle k \vert A \vert l\rangle \vert^2, where \lambda_k and \vert k \rangle are the eigenvalues and eigenvectors of the density matrix \varrho, respectively, and the summation goes over all k and l such that \lambda_k+\lambda_l>0. When the observable generates a unitarity (physics), unita ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Density Matrix
In quantum mechanics, a density matrix (or density operator) is a matrix used in calculating the probabilities of the outcomes of measurements performed on physical systems. It is a generalization of the state vectors or wavefunctions: while those can only represent pure states, density matrices can also represent mixed states. These arise in quantum mechanics in two different situations: # when the preparation of a system can randomly produce different pure states, and thus one must deal with the statistics of possible preparations, and # when one wants to describe a physical system that is entangled with another, without describing their combined state. This case is typical for a system interacting with some environment (e.g. decoherence). In this case, the density matrix of an entangled system differs from that of an ensemble of pure states that, combined, would give the same statistical results upon measurement. Density matrices are thus crucial tools in areas of quantum ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hamiltonian (quantum Mechanics)
In quantum mechanics, the Hamiltonian of a system is an operator corresponding to the total energy of that system, including both kinetic energy and potential energy. Its spectrum, the system's ''energy spectrum'' or its set of ''energy eigenvalues'', is the set of possible outcomes obtainable from a measurement of the system's total energy. Due to its close relation to the energy spectrum and time-evolution of a system, it is of fundamental importance in most formulations of quantum theory. The Hamiltonian is named after William Rowan Hamilton, who developed a revolutionary reformulation of Newtonian mechanics, known as Hamiltonian mechanics, which was historically important to the development of quantum physics. Similar to vector notation, it is typically denoted by \hat, where the hat indicates that it is an operator. It can also be written as H or \check. Introduction The Hamiltonian of a system represents the total energy of the system; that is, the sum of the kine ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Unitarity (physics)
In quantum physics, unitarity is (or a unitary process has) the condition that the time evolution of a quantum state according to the Schrödinger equation is mathematically represented by a unitary operator. This is typically taken as an axiom or basic postulate of quantum mechanics, while generalizations of or departures from unitarity are part of speculations about theories that may go beyond quantum mechanics. A unitarity bound is any inequality that follows from the unitarity of the evolution operator, i.e. from the statement that time evolution preserves inner products in Hilbert space. Hamiltonian evolution Time evolution described by a time-independent Hamiltonian is represented by a one-parameter family of unitary operators, for which the Hamiltonian is a generator: U(t) = e^. In the Schrödinger picture, the unitary operators are taken to act upon the system's quantum state, whereas in the Heisenberg picture, the time dependence is incorporated into the observable ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Uncertainty Principle
The uncertainty principle, also known as Heisenberg's indeterminacy principle, is a fundamental concept in quantum mechanics. It states that there is a limit to the precision with which certain pairs of physical properties, such as position and momentum, can be simultaneously known. In other words, the more accurately one property is measured, the less accurately the other property can be known. More formally, the uncertainty principle is any of a variety of mathematical inequalities asserting a fundamental limit to the product of the accuracy of certain related pairs of measurements on a quantum system, such as position, ''x'', and momentum, ''p''. Such paired-variables are known as complementary variables or canonically conjugate variables. First introduced in 1927 by German physicist Werner Heisenberg, the formal inequality relating the standard deviation of position ''σx'' and the standard deviation of momentum ''σp'' was derived by Earle Hesse Kennard later that ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quantum Information Science
Quantum information science is a field that combines the principles of quantum mechanics with information theory to study the processing, analysis, and transmission of information. It covers both theoretical and experimental aspects of quantum physics, including the limits of what can be achieved with quantum information. The term quantum information theory is sometimes used, but it does not include experimental research and can be confused with a subfield of quantum information science that deals with the processing of quantum information. Scientific and engineering studies Quantum teleportation, Quantum entanglement, entanglement and the manufacturing of quantum computers depend on a comprehensive understanding of quantum physics and engineering. Google and IBM have invested significantly in quantum computer hardware research, leading to significant progress in manufacturing quantum computers since the 2010s. Currently, it is possible to create a quantum computer with over 100 qub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |