Provable Prime
In number theory, a provable prime is an integer that has been calculated to be prime using a primality-proving algorithm. Boot-strapping techniques using Pocklington primality test are the most common ways to generate provable primes for cryptography. Contrast with probable prime, which is likely (but not certain) to be prime, based on the output of a probabilistic primality test. In principle, every prime number can be proved to be prime in polynomial time by using the AKS primality test. Other methods which guarantee that their result is prime, but which do not work for all primes, are useful for the random generation of provable primes. Provable primes have also been generated on embedded devices. See also *Primality test *Probable prime In number theory, a probable prime (PRP) is an integer that satisfies a specific condition that is satisfied by all prime numbers, but which is not satisfied by most composite numbers. Different types of probable primes have different sp ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Number Theory Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics."German original: "Die Mathematik ist die Königin der Wissenschaften, und die Arithmetik ist die Königin der Mathematik." Number theorists study prime numbers as well as the properties of mathematical objects made out of integers (for example, rational numbers) or defined as generalizations of the integers (for example, algebraic integers). Integers can be considered either in themselve |