Projective Hilbert Space
In mathematics and the foundations of quantum mechanics, the projective Hilbert space or ray space \mathbf(H) of a complex Hilbert space H is the set of equivalence classes /math> of non-zero vectors v \in H, for the equivalence relation \sim on H given by :w \sim v if and only if v = \lambda w for some non-zero complex number \lambda. This is the usual construction of projectivization, applied to a complex Hilbert space. In quantum mechanics, the equivalence classes /math> are also referred to as rays or projective rays. Each such projective ray is a copy of the nonzero complex numbers, which is topologically a two-dimensional plane after one point has been removed. Overview The physical significance of the projective Hilbert space is that in quantum theory, the wave functions \psi and \lambda \psi represent the same ''physical state'', for any \lambda \ne 0. The Born rule demands that if the system is physical and measurable, its wave function has unit norm, \langle\psi, \p ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Irreducible Representation
In mathematics, specifically in the representation theory of groups and algebras, an irreducible representation (\rho, V) or irrep of an algebraic structure A is a nonzero representation that has no proper nontrivial subrepresentation (\rho, _W,W), with W \subset V closed under the action of \. Every finite-dimensional unitary representation on a Hilbert space V is the direct sum of irreducible representations. Irreducible representations are always indecomposable (i.e. cannot be decomposed further into a direct sum of representations), but the converse may not hold, e.g. the two-dimensional representation of the real numbers acting by upper triangular unipotent matrices is indecomposable but reducible. History Group representation theory was generalized by Richard Brauer from the 1940s to give modular representation theory, in which the matrix operators act on a vector space over a field K of arbitrary characteristic, rather than a vector space over the field of real number ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Segre Mapping
In mathematics, the Segre embedding is used in projective geometry to consider the cartesian product (of sets) of two projective spaces as a projective variety. It is named after Corrado Segre. Definition The Segre map may be defined as the map :\sigma: P^n \times P^m \to P^\ taking a pair of points ( \in P^n \times P^m to their product :\sigma:( _0:X_1:\cdots:X_n _0:Y_1:\cdots:Y_m \mapsto _0Y_0: X_0Y_1: \cdots :X_iY_j: \cdots :X_nY_m (the ''XiYj'' are taken in lexicographical order). Here, P^n and P^m are projective vector spaces over some arbitrary field, and the notation : _0:X_1:\cdots:X_n is that of homogeneous coordinates on the space. The image of the map is a variety, called a Segre variety. It is sometimes written as \Sigma_. Discussion In the language of linear algebra, for given vector spaces ''U'' and ''V'' over the same field ''K'', there is a natural way to linearly map their Cartesian product to their tensor product. : \varphi: U\times V \to U\otimes ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cartesian Product
In mathematics, specifically set theory, the Cartesian product of two sets and , denoted , is the set of all ordered pairs where is an element of and is an element of . In terms of set-builder notation, that is A\times B = \. A table can be created by taking the Cartesian product of a set of rows and a set of columns. If the Cartesian product is taken, the cells of the table contain ordered pairs of the form . One can similarly define the Cartesian product of sets, also known as an -fold Cartesian product, which can be represented by an -dimensional array, where each element is an -tuple. An ordered pair is a 2-tuple or couple. More generally still, one can define the Cartesian product of an indexed family of sets. The Cartesian product is named after René Descartes, whose formulation of analytic geometry gave rise to the concept, which is further generalized in terms of direct product. Set-theoretic definition A rigorous definition of the Cartesian product re ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hopf Fibration
In differential topology, the Hopf fibration (also known as the Hopf bundle or Hopf map) describes a 3-sphere (a hypersphere in four-dimensional space) in terms of circles and an ordinary sphere. Discovered by Heinz Hopf in 1931, it is an influential early example of a fiber bundle. Technically, Hopf found a many-to-one continuous function (or "map") from the -sphere onto the -sphere such that each distinct ''point'' of the -sphere is mapped from a distinct great circle of the -sphere . Thus the -sphere is composed of fibers, where each fiber is a circle — one for each point of the -sphere. This fiber bundle structure is denoted :S^1 \hookrightarrow S^3 \xrightarrow S^2, meaning that the fiber space (a circle) is embedded in the total space (the -sphere), and (Hopf's map) projects onto the base space (the ordinary -sphere). The Hopf fibration, like any fiber bundle, has the important property that it is locally a product space. However it is not a ''trivial'' fiber ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Riemann Sphere
In mathematics, the Riemann sphere, named after Bernhard Riemann, is a Mathematical model, model of the extended complex plane (also called the closed complex plane): the complex plane plus one point at infinity. This extended plane represents the extended complex numbers, that is, the complex numbers plus a value \infty for infinity. With the Riemann model, the point \infty is near to very large numbers, just as the point 0 is near to very small numbers. The extended complex numbers are useful in complex analysis because they allow for division by zero in some circumstances, in a way that makes expressions such as 1/0=\infty well-behaved. For example, any rational function on the complex plane can be extended to a holomorphic function on the Riemann sphere, with the Pole (complex analysis), poles of the rational function mapping to infinity. More generally, any meromorphic function can be thought of as a holomorphic function whose codomain is the Riemann sphere. In geometr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bloch Sphere
In quantum mechanics and computing, the Bloch sphere is a geometrical representation of the pure state space of a two-level quantum mechanical system ( qubit), named after the physicist Felix Bloch. Mathematically each quantum mechanical system is associated with a separable complex Hilbert space H. A pure state of a quantum system is represented by a non-zero vector \psi in H. As the vectors \psi and \lambda \psi (with \lambda \in \mathbb^*) represent the same state, the level of the quantum system corresponds to the dimension of the Hilbert space and pure states can be represented as equivalence classes, or, rays in a projective Hilbert space \mathbf(H_)=\mathbb\mathbf^. For a two-dimensional Hilbert space, the space of all such states is the complex projective line \mathbb\mathbf^1. This is the Bloch sphere, which can be mapped to the Riemann sphere. The Bloch sphere is a unit 2-sphere, with antipodal points corresponding to a pair of mutually orthogonal state vec ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Complex Projective Line
In mathematics, the Riemann sphere, named after Bernhard Riemann, is a model of the extended complex plane (also called the closed complex plane): the complex plane plus one point at infinity. This extended plane represents the extended complex numbers, that is, the complex numbers plus a value \infty for infinity. With the Riemann model, the point \infty is near to very large numbers, just as the point 0 is near to very small numbers. The extended complex numbers are useful in complex analysis because they allow for division by zero in some circumstances, in a way that makes expressions such as 1/0=\infty well-behaved. For example, any rational function on the complex plane can be extended to a holomorphic function on the Riemann sphere, with the poles of the rational function mapping to infinity. More generally, any meromorphic function can be thought of as a holomorphic function whose codomain is the Riemann sphere. In geometry, the Riemann sphere is the prototypical ex ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Qubit
In quantum computing, a qubit () or quantum bit is a basic unit of quantum information—the quantum version of the classic binary bit physically realized with a two-state device. A qubit is a two-state (or two-level) quantum-mechanical system, one of the simplest quantum systems displaying the peculiarity of quantum mechanics. Examples include the spin of the electron in which the two levels can be taken as spin up and spin down; or the polarization of a single photon in which the two spin states (left-handed and the right-handed circular polarization) can also be measured as horizontal and vertical linear polarization. In a classical system, a bit would have to be in one state or the other. However, quantum mechanics allows the qubit to be in a coherent superposition of multiple states simultaneously, a property that is fundamental to quantum mechanics and quantum computing. Etymology The coining of the term ''qubit'' is attributed to Benjamin Schumacher. In the acknow ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fubini–Study Metric
In mathematics, the Fubini–Study metric (IPA: /fubini-ʃtuːdi/) is a Kähler metric on a complex projective space CP''n'' endowed with a Hermitian form. This metric was originally described in 1904 and 1905 by Guido Fubini and Eduard Study. A Hermitian form in (the vector space) C''n''+1 defines a unitary subgroup U(''n''+1) in GL(''n''+1,C). A Fubini–Study metric is determined up to homothety (overall scaling) by invariance under such a U(''n''+1) action; thus it is homogeneous. Equipped with a Fubini–Study metric, CP''n'' is a symmetric space. The particular normalization on the metric depends on the application. In Riemannian geometry, one uses a normalization so that the Fubini–Study metric simply relates to the standard metric on the (2''n''+1)-sphere. In algebraic geometry, one uses a normalization making CP''n'' a Hodge manifold. Construction The Fubini–Study metric arises naturally in the quotient space construction of complex projective space. Specifica ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kähler Metric
Kähler may refer to: People *Birgit Kähler (born 1970), German high jumper * Erich Kähler (1906–2000), German mathematician * Heinz Kähler (1905–1974), German art historian and archaeologist * Luise Kähler (1869–1955), German trade union leader and politician * Martin Kähler (1835–1912), German theologian * Otto Kähler (1894–1967), German admiral * Wilhelmine Kähler (1864–1941), German politician Other * Kähler Keramik, a Danish ceramics manufacturer *Kähler manifold In mathematics and especially differential geometry, a Kähler manifold is a manifold with three mutually compatible structures: a complex structure, a Riemannian structure, and a symplectic structure. The concept was first studied by Jan Arnol ..., an important geometric complex manifold See also * Kahler (other) {{disambiguation, surname Occupational surnames ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Unitary Group
*
*
{{disambiguation ...
Unitary may refer to: Mathematics * Unitary divisor * Unitary element * Unitary group * Unitary matrix * Unitary morphism * Unitary operator * Unitary transformation * Unitary representation * Unitarity (physics) * ''E''-unitary inverse semigroup Politics * Unitary authority * Unitary state See also * Unital (other) * Unitarianism Unitarianism () is a Nontrinitarianism, nontrinitarian sect of Christianity. Unitarian Christians affirm the wikt:unitary, unitary God in Christianity, nature of God as the singular and unique Creator deity, creator of the universe, believe that ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |