Processing Unit
   HOME



picture info

Processing Unit
In computing and computer science, a processor or processing unit is an electrical component (digital circuit) that performs operations on an external data source, usually memory or some other data stream. It typically takes the form of a microprocessor, which can be implemented on a single or a few tightly integrated metal–oxide–semiconductor integrated circuit chips. In the past, processors were constructed using multiple individual vacuum tubes, multiple individual transistors, or multiple integrated circuits. The term is frequently used to refer to the central processing unit (CPU), the main processor in a system. However, it can also refer to other coprocessors, such as a graphics processing unit (GPU). Traditional processors are typically based on silicon; however, researchers have developed experimental processors based on alternative materials such as carbon nanotubes, graphene, diamond, and alloys made of elements from groups three and five of the periodic table. T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

80486DX2 200x
8 (eight) is the natural number following 7 and preceding 9. Etymology English ''eight'', from Old English '', æhta'', Proto-Germanic ''*ahto'' is a direct continuation of Proto-Indo-European '' *oḱtṓ(w)-'', and as such cognate with Greek and Latin , both of which stems are reflected by the English prefix oct(o)-, as in the ordinal adjective ''octaval'' or ''octavary'', the distributive adjective is ''octonary''. The adjective ''octuple'' (Latin ) may also be used as a noun, meaning "a set of eight items"; the diminutive '' octuplet'' is mostly used to refer to eight siblings delivered in one birth. The Semitic numeral is based on a root ''*θmn-'', whence Akkadian ''smn-'', Arabic ''ṯmn-'', Hebrew ''šmn-'' etc. The Chinese numeral, written (Mandarin: ''bā''; Cantonese: ''baat''), is from Old Chinese ''*priāt-'', ultimately from Sino-Tibetan ''b-r-gyat'' or ''b-g-ryat'' which also yielded Tibetan '' brgyat''. It has been argued that, as the cardinal nu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Group 3 Element
Group 3 is the first group of transition metals in the periodic table. This group is closely related to the rare-earth elements. It contains the four elements scandium (Sc), yttrium (Y), lutetium (Lu), and lawrencium (Lr). The group is also called the scandium group or scandium family after its lightest member. The chemistry of the group 3 elements is typical for early transition metals: they all essentially have only the group oxidation state of +3 as a major one, and like the preceding main-group metals are quite electropositive and have a less rich coordination chemistry. Due to the effects of the lanthanide contraction, yttrium and lutetium are very similar in properties. Yttrium and lutetium have essentially the chemistry of the heavy lanthanides, but scandium shows several differences due to its small size. This is a similar pattern to those of the early transition metal groups, where the lightest element is distinct from the very similar next two. All the group 3 elemen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Processor Register
A processor register is a quickly accessible location available to a computer's processor. Registers usually consist of a small amount of fast storage, although some registers have specific hardware functions, and may be read-only or write-only. In computer architecture, registers are typically addressed by mechanisms other than main memory, but may in some cases be assigned a memory address e.g. DEC PDP-10, ICT 1900. Almost all computers, whether load/store architecture or not, load items of data from a larger memory into registers where they are used for arithmetic operations, bitwise operations, and other operations, and are manipulated or tested by machine instructions. Manipulated items are then often stored back to main memory, either by the same instruction or by a subsequent one. Modern processors use either static or dynamic random-access memory (RAM) as main memory, with the latter usually accessed via one or more cache levels. Processor registers are normal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Arithmetic Logic Unit
In computing, an arithmetic logic unit (ALU) is a Combinational logic, combinational digital circuit that performs arithmetic and bitwise operations on integer binary numbers. This is in contrast to a floating-point unit (FPU), which operates on floating point numbers. It is a fundamental building block of many types of computing circuits, including the central processing unit (CPU) of computers, FPUs, and graphics processing units (GPUs). The inputs to an ALU are the data to be operated on, called operands, and a code indicating the operation to be performed (opcode); the ALU's output is the result of the performed operation. In many designs, the ALU also has status inputs or outputs, or both, which convey information about a previous operation or the current operation, respectively, between the ALU and external status registers. Signals An ALU has a variety of input and output net (electronics), nets, which are the electrical conductors used to convey Digital signal (electroni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Control Unit
The control unit (CU) is a component of a computer's central processing unit (CPU) that directs the operation of the processor. A CU typically uses a binary decoder to convert coded instructions into timing and control signals that direct the operation of the other units (memory, arithmetic logic unit and input and output devices, etc.). Most computer resources are managed by the CU. It directs the flow of data between the CPU and the other devices. John von Neumann included the control unit as part of the von Neumann architecture. In modern computer designs, the control unit is typically an internal part of the CPU with its overall role and operation unchanged since its introduction. Multicycle control units The simplest computers use a multicycle microarchitecture. These were the earliest designs. They are still popular in the very smallest computers, such as the embedded systems that operate machinery. In a computer, the control unit often steps through the instructio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Von Neumann Architecture
The von Neumann architecture—also known as the von Neumann model or Princeton architecture—is a computer architecture based on the '' First Draft of a Report on the EDVAC'', written by John von Neumann in 1945, describing designs discussed with John Mauchly and J. Presper Eckert at the University of Pennsylvania's Moore School of Electrical Engineering. The document describes a design architecture for an electronic digital computer made of "organs" that were later understood to have these components: * A processing unit with both an arithmetic logic unit and processor registers * A control unit that includes an instruction register and a program counter * Memory that stores data and instructions * External mass storage * Input and output mechanisms.. The attribution of the invention of the architecture to von Neumann is controversial, not least because Eckert and Mauchly had done a lot of the required design work and claim to have had the idea for stored programs ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Central Processing Unit
A central processing unit (CPU), also called a central processor, main processor, or just processor, is the primary Processor (computing), processor in a given computer. Its electronic circuitry executes Instruction (computing), instructions of a computer program, such as arithmetic, logic, controlling, and input/output (I/O) operations. This role contrasts with that of external components, such as main memory and I/O circuitry, and specialized coprocessors such as graphics processing units (GPUs). The form, CPU design, design, and implementation of CPUs have changed over time, but their fundamental operation remains almost unchanged. Principal components of a CPU include the arithmetic–logic unit (ALU) that performs arithmetic operation, arithmetic and Bitwise operation, logic operations, processor registers that supply operands to the ALU and store the results of ALU operations, and a control unit that orchestrates the #Fetch, fetching (from memory), #Decode, decoding and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gordon Moore
Gordon Earle Moore (January 3, 1929 – March 24, 2023) was an American businessman, engineer, and the co-founder and emeritus chairman of Intel Corporation. He proposed Moore's law which makes the observation that the number of transistors in an integrated circuit (IC) doubles about every two years. Early life and education Gordon Moore was born in 1929 as the second son of Walter Harold Moore (a sheriff in San Mateo County) and Florence Almira "Mira" Williamson (a homemaker). When Moore started school in 1935, the faculty noted his introverted personality. His father accepted a promotion to deputy sheriff in 1938 and moved the family to Redwood City, California. In 1940, Moore received a chemistry set as a Christmas gift, which inspired him to become a chemist. From 1942 to 1946, Moore studied at Sequoia High School, where he was involved in athletic activities. From 1946 to 1947, Moore attended San José State College (now San José State University), studying chemistry. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Moore's Law
Moore's law is the observation that the Transistor count, number of transistors in an integrated circuit (IC) doubles about every two years. Moore's law is an observation and Forecasting, projection of a historical trend. Rather than a law of physics, it is an empirical relationship. It is an experience-curve law, a type of law quantifying efficiency gains from experience in production. The observation is named after Gordon Moore, the co-founder of Fairchild Semiconductor and Intel and former CEO of the latter, who in 1965 noted that the number of components per integrated circuit had been exponential growth, doubling every year, and projected this rate of growth would continue for at least another decade. In 1975, looking forward to the next decade, he revised the forecast to doubling every two years, a compound annual growth rate (CAGR) of 41%. Moore's empirical evidence did not directly imply that the historical trend would continue, nevertheless, his prediction has held si ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Qubit
In quantum computing, a qubit () or quantum bit is a basic unit of quantum information—the quantum version of the classic binary bit physically realized with a two-state device. A qubit is a two-state (or two-level) quantum-mechanical system, one of the simplest quantum systems displaying the peculiarity of quantum mechanics. Examples include the spin of the electron in which the two levels can be taken as spin up and spin down; or the polarization of a single photon in which the two spin states (left-handed and the right-handed circular polarization) can also be measured as horizontal and vertical linear polarization. In a classical system, a bit would have to be in one state or the other. However, quantum mechanics allows the qubit to be in a coherent superposition of multiple states simultaneously, a property that is fundamental to quantum mechanics and quantum computing. Etymology The coining of the term ''qubit'' is attributed to Benjamin Schumacher. In the acknow ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quantum Superposition
Quantum superposition is a fundamental principle of quantum mechanics that states that linear combinations of solutions to the Schrödinger equation are also solutions of the Schrödinger equation. This follows from the fact that the Schrödinger equation is a linear differential equation in time and position. More precisely, the state of a system is given by a linear combination of all the eigenfunctions of the Schrödinger equation governing that system. An example is a qubit used in quantum information processing. A qubit state is most generally a superposition of the basis states , 0 \rangle and , 1 \rangle: : , \Psi \rangle = c_0, 0\rangle + c_1, 1\rangle, where , \Psi \rangle is the quantum state of the qubit, and , 0 \rangle, , 1 \rangle denote particular solutions to the Schrödinger equation in Dirac notation weighted by the two probability amplitudes c_0 and c_1 that both are complex numbers. Here , 0 \rangle corresponds to the classical 0 bit, and , 1 \r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]