HOME





Primary Constraint
In Hamiltonian mechanics, a primary constraint is a relation between the coordinates and momenta that holds without using the equations of motion. A secondary constraint is one that is not primary—in other words it holds when the equations of motion are satisfied, but need not hold if they are not satisfied The secondary constraints arise from the condition that the primary constraints should be preserved in time. A few authors use more refined terminology, where the non-primary constraints are divided into secondary, tertiary, quaternary, etc. constraints. The secondary constraints arise directly from the condition that the primary constraints are preserved by time Time is the continuous progression of existence that occurs in an apparently irreversible process, irreversible succession from the past, through the present, and into the future. It is a component quantity of various measurements used to sequ ..., the tertiary constraints arise from the condition that the sec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Hamiltonian Mechanics
In physics, Hamiltonian mechanics is a reformulation of Lagrangian mechanics that emerged in 1833. Introduced by Sir William Rowan Hamilton, Hamiltonian mechanics replaces (generalized) velocities \dot q^i used in Lagrangian mechanics with (generalized) ''momenta''. Both theories provide interpretations of classical mechanics and describe the same physical phenomena. Hamiltonian mechanics has a close relationship with geometry (notably, symplectic geometry and Poisson structures) and serves as a Hamilton–Jacobi equation, link between classical and quantum mechanics. Overview Phase space coordinates (''p'', ''q'') and Hamiltonian ''H'' Let (M, \mathcal L) be a Lagrangian mechanics, mechanical system with configuration space (physics), configuration space M and smooth Lagrangian_mechanics#Lagrangian, Lagrangian \mathcal L. Select a standard coordinate system (\boldsymbol,\boldsymbol) on M. The quantities \textstyle p_i(\boldsymbol,\boldsymbol,t) ~\stackrel~ / are called ''m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Coordinate System
In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine and standardize the position of the points or other geometric elements on a manifold such as Euclidean space. The coordinates are not interchangeable; they are commonly distinguished by their position in an ordered tuple, or by a label, such as in "the ''x''-coordinate". The coordinates are taken to be real numbers in elementary mathematics, but may be complex numbers or elements of a more abstract system such as a commutative ring. The use of a coordinate system allows problems in geometry to be translated into problems about numbers and ''vice versa''; this is the basis of analytic geometry. Common coordinate systems Number line The simplest example of a coordinate system is the identification of points on a line with real numbers using the '' number line''. In this system, an arbitrary point ''O'' (the ''origin'') is chosen on a given line. The coordinate o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Momentum
In Newtonian mechanics, momentum (: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass and is its velocity (also a vector quantity), then the object's momentum (from Latin '' pellere'' "push, drive") is: \mathbf = m \mathbf. In the International System of Units (SI), the unit of measurement of momentum is the kilogram metre per second (kg⋅m/s), which is dimensionally equivalent to the newton-second. Newton's second law of motion states that the rate of change of a body's momentum is equal to the net force acting on it. Momentum depends on the frame of reference, but in any inertial frame of reference, it is a ''conserved'' quantity, meaning that if a closed system is not affected by external forces, its total momentum does not change. Momentum is also conserved in special relativity (with a mo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Equations Of Motion
In physics, equations of motion are equations that describe the behavior of a physical system in terms of its motion as a function of time. More specifically, the equations of motion describe the behavior of a physical system as a set of mathematical functions in terms of dynamic variables. These variables are usually spatial coordinates and time, but may include momentum components. The most general choice are generalized coordinates which can be any convenient variables characteristic of the physical system. The functions are defined in a Euclidean space in classical mechanics, but are replaced by curved spaces in relativity. If the dynamics of a system is known, the equations are the solutions for the differential equations describing the motion of the dynamics. Types There are two main descriptions of motion: dynamics and kinematics. Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Time
Time is the continuous progression of existence that occurs in an apparently irreversible process, irreversible succession from the past, through the present, and into the future. It is a component quantity of various measurements used to sequence events, to compare the duration of events (or the intervals between them), and to quantify rates of change of quantities in material reality or in the qualia, conscious experience. Time is often referred to as a fourth dimension, along with Three-dimensional space, three spatial dimensions. Time is one of the seven fundamental physical quantities in both the International System of Units (SI) and International System of Quantities. The SI base unit of time is the second, which is defined by measuring the electronic transition frequency of caesium atoms. General relativity is the primary framework for understanding how spacetime works. Through advances in both theoretical and experimental investigations of spacetime, it has been shown ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Peter Bergmann
Peter Gabriel Bergmann (24 March 1915 – 19 October 2002) was a German-American physicist best known for his work with Albert Einstein on a unified field theory encompassing all physical interactions. He also introduced primary and secondary constraints into mechanics. Early life and education Bergmann was born into a Jewish family of Max Bergmann, a biochemistry professor, and Emmy Bergmann, a pediatrician in Berlin. His father would later be a professor of chemistry at the Rockefeller Institute for Medical Research. He began college in 1931, at the age of 16, at ''Technische Hochschule'' (now TU Dresden) under the mentorship of Harry Dember. Bergmann obtained his PhD at the age of 21 from the German University in Prague in 1936 under the direction of Philipp Frank. Bergmann's family scattered all over the world during Nazi rule; his sister Clara stayed behind and ultimately was murdered at Auschwitz. Career Bergmann's association with Einstein began without his kn ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


First-class Constraint
In physics, a first-class constraint is a dynamical quantity in a constrained Hamiltonian system whose Poisson bracket with all the other constraints vanishes on the constraint surface in phase space (the surface implicitly defined by the simultaneous vanishing of all the constraints). To calculate the first-class constraint, one assumes that there are no second-class constraints, or that they have been calculated previously, and their Dirac brackets generated. First- and second-class constraints were introduced by as a way of quantizing mechanical systems such as gauge theories where the symplectic form is degenerate. The terminology of first- and second-class constraints is confusingly similar to that of primary and secondary constraints, reflecting the manner in which these are generated. These divisions are independent: both first- and second-class constraints can be either primary or secondary, so this gives altogether four different classes of constraints. Poisson bracke ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Canadian Journal Of Mathematics
The ''Canadian Journal of Mathematics'' () is a bimonthly mathematics journal published by the Canadian Mathematical Society. It was established in 1949 by H. S. M. Coxeter and G. de B. Robinson. The current editors-in-chief of the journal are Henry Kim and Robert McCann. The journal publishes articles in all areas of mathematics. See also * Canadian Mathematical Bulletin The ''Canadian Mathematical Bulletin'' () is a mathematics journal, established in 1958 and published quarterly by the Canadian Mathematical Society. The current editors-in-chief of the journal are Antonio Lei and Javad Mashreghi. The journal p ... References External links * Research Journals, Canadian Mathematical Society University of Toronto Press academic journals Mathematics journals Academic journals established in 1949 Bimonthly journals Multilingual journals Cambridge University Press academic journals Academic journals associated with learned and professional societies of Cana ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]