HOME
*





Precoloring Extension
In graph theory, precoloring extension is the problem of extending a graph coloring of a subset of the vertices of a graph, with a given set of colors, to a coloring of the whole graph that does not assign the same color to any two adjacent vertices. Complexity Precoloring extension has the usual graph coloring problem as a special case, in which the initially colored subset of vertices is empty; therefore, it is NP-complete. However, it is also NP-complete for some other classes of graphs on which the usual graph coloring problem is easier. For instance it is NP-complete on the rook's graphs, for which it corresponds to the problem of completing a partially filled-in Latin square. The problem may be solved in polynomial time for graphs of bounded treewidth, but the exponent of the polynomial depends on the treewidth. It may be solved in linear time for precoloring extension instances in which both the number of colors and the treewidth are bounded. Related problems Precoloring ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Theory
In mathematics, graph theory is the study of '' graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are connected by ''edges'' (also called ''links'' or ''lines''). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics. Definitions Definitions in graph theory vary. The following are some of the more basic ways of defining graphs and related mathematical structures. Graph In one restricted but very common sense of the term, a graph is an ordered pair G=(V,E) comprising: * V, a set of vertices (also called nodes or points); * E \subseteq \, a set of edges (also called links or lines), which are unordered pairs of vertices (that is, an edge is associated with t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Coloring
In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels traditionally called "colors" to elements of a graph subject to certain constraints. In its simplest form, it is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. Similarly, an edge coloring assigns a color to each edge so that no two adjacent edges are of the same color, and a face coloring of a planar graph assigns a color to each face or region so that no two faces that share a boundary have the same color. Vertex coloring is often used to introduce graph coloring problems, since other coloring problems can be transformed into a vertex coloring instance. For example, an edge coloring of a graph is just a vertex coloring of its line graph, and a face coloring of a plane graph is just a vertex coloring of its dual. However, non-vertex coloring problems are often stated and studied as-is. This is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

NP-complete
In computational complexity theory, a problem is NP-complete when: # it is a problem for which the correctness of each solution can be verified quickly (namely, in polynomial time) and a brute-force search algorithm can find a solution by trying all possible solutions. # the problem can be used to simulate every other problem for which we can verify quickly that a solution is correct. In this sense, NP-complete problems are the hardest of the problems to which solutions can be verified quickly. If we could find solutions of some NP-complete problem quickly, we could quickly find the solutions of every other problem to which a given solution can be easily verified. The name "NP-complete" is short for "nondeterministic polynomial-time complete". In this name, "nondeterministic" refers to nondeterministic Turing machines, a way of mathematically formalizing the idea of a brute-force search algorithm. Polynomial time refers to an amount of time that is considered "quick" for a det ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rook's Graph
In graph theory, a rook's graph is a graph that represents all legal moves of the rook chess piece on a chessboard. Each vertex of a rook's graph represents a square on a chessboard, and each edge connects two squares on the same row (rank) or on the same column (file) as each other, the squares that a rook can move between. These graphs can be constructed for chessboards of any rectangular shape, and can be defined mathematically as the Cartesian product of two complete graphs, as the two-dimensional Hamming graphs, or as the line graphs of complete bipartite graphs. Rook's graphs are highly symmetric, having symmetries taking every vertex to every other vertex. In rook's graphs defined from square chessboards, more strongly, every two edges are symmetric, and every pair of vertices is symmetric to every other pair at the same distance (they are distance-transitive). For chessboards with relatively prime dimensions, they are circulant graphs. With one exception, they can be dist ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Latin Square
In combinatorics and in experimental design, a Latin square is an ''n'' × ''n'' array filled with ''n'' different symbols, each occurring exactly once in each row and exactly once in each column. An example of a 3×3 Latin square is The name "Latin square" was inspired by mathematical papers by Leonhard Euler (1707–1783), who used Latin characters as symbols, but any set of symbols can be used: in the above example, the alphabetic sequence A, B, C can be replaced by the integer sequence 1, 2, 3. Euler began the general theory of Latin squares. History The Korean mathematician Choi Seok-jeong was the first to publish an example of Latin squares of order nine, in order to construct a magic square in 1700, predating Leonhard Euler by 67 years. Reduced form A Latin square is said to be ''reduced'' (also, ''normalized'' or ''in standard form'') if both its first row and its first column are in their natural order. For example, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polynomial Time
In computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to perform. Thus, the amount of time taken and the number of elementary operations performed by the algorithm are taken to be related by a constant factor. Since an algorithm's running time may vary among different inputs of the same size, one commonly considers the worst-case time complexity, which is the maximum amount of time required for inputs of a given size. Less common, and usually specified explicitly, is the average-case complexity, which is the average of the time taken on inputs of a given size (this makes sense because there are only a finite number of possible inputs of a given size). In both cases, the time complexity is generally express ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Treewidth
In graph theory, the treewidth of an undirected graph is an integer number which specifies, informally, how far the graph is from being a tree. The smallest treewidth is 1; the graphs with treewidth 1 are exactly the trees and the forests. The graphs with treewidth at most 2 are the series–parallel graphs. The maximal graphs with treewidth exactly are called '' -trees'', and the graphs with treewidth at most are called '' partial -trees''. Many other well-studied graph families also have bounded treewidth. Treewidth may be formally defined in several equivalent ways: in terms of the size of the largest vertex set in a tree decomposition of the graph, in terms of the size of the largest clique in a chordal completion of the graph, in terms of the maximum order of a haven describing a strategy for a pursuit–evasion game on the graph, or in terms of the maximum order of a bramble, a collection of connected subgraphs that all touch each other. Treewidth is commonly used as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

List Coloring
In graph theory, a branch of mathematics, list coloring is a type of graph coloring where each vertex can be restricted to a list of allowed colors. It was first studied in the 1970s in independent papers by Vizing and by Erdős, Rubin, and Taylor. Definition Given a graph ''G'' and given a set ''L''(''v'') of colors for each vertex ''v'' (called a list), a list coloring is a ''choice function'' that maps every vertex ''v'' to a color in the list ''L''(''v''). As with graph coloring, a list coloring is generally assumed to be proper, meaning no two adjacent vertices receive the same color. A graph is ''k''-choosable (or ''k''-list-colorable) if it has a proper list coloring no matter how one assigns a list of ''k'' colors to each vertex. The choosability (or list colorability or list chromatic number) ch(''G'') of a graph ''G'' is the least number ''k'' such that ''G'' is ''k''-choosable. More generally, for a function ''f'' assigning a positive integer ''f''(''v'') to each ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sudoku
Sudoku (; ja, 数独, sūdoku, digit-single; originally called Number Place) is a logic-based, combinatorics, combinatorial number-placement puzzle. In classic Sudoku, the objective is to fill a 9 × 9 grid with digits so that each column, each row, and each of the nine 3 × 3 subgrids that compose the grid (also called "boxes", "blocks", or "regions") contain all of the digits from 1 to 9. The puzzle setter provides a partially completed grid, which for a well-posed puzzle has a single solution. French newspapers featured variations of the Sudoku puzzles in the 19th century, and the puzzle has appeared since 1979 in puzzle books under the name Number Place. However, the modern Sudoku only began to gain widespread popularity in 1986 when it was published by the Japanese puzzle company Nikoli (publisher), Nikoli under the name Sudoku, meaning "single number". It first appeared in a U.S. newspaper, and then ''The Times'' (London), in 2004, thanks to the efforts ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sudoku Graph
In the mathematics of Sudoku, the Sudoku graph is an undirected graph whose vertices represent the cells of a (blank) Sudoku puzzle and whose edges represent pairs of cells that belong to the same row, column, or block of the puzzle. The problem of solving a Sudoku puzzle can be represented as precoloring extension on this graph. It is an integral Cayley graph. Basic properties and examples On a Sudoku board of size n^2\times n^2, the Sudoku graph has n^4 vertices, each with exactly 3n^2-2n-1 neighbors. Therefore, it is a regular graph. The total number of edges is n^4(3n^2-2n-1)/2. For instance, the graph shown in the figure above, for a 4\times 4 board, has 16 vertices and 56 edges, and is 7-regular. For the most common form of Sudoku, on a 9\times 9 board, the Sudoku graph is a 20-regular graph with 81 vertices and 810 edges. The second figure shows how to count the neighbors of each cell in a 9\times 9 board. Puzzle solutions and graph coloring Each row, column, or block ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Notices Of The American Mathematical Society
''Notices of the American Mathematical Society'' is the membership journal of the American Mathematical Society (AMS), published monthly except for the combined June/July issue. The first volume appeared in 1953. Each issue of the magazine since January 1995 is available in its entirety on the journal web site. Articles are peer-reviewed by an editorial board of mathematical experts. Since 2019, the editor-in-chief is Erica Flapan. The cover regularly features mathematical visualizations. The ''Notices'' is self-described to be the world's most widely read mathematical journal. As the membership journal of the American Mathematical Society, the ''Notices'' is sent to the approximately 30,000 AMS members worldwide, one-third of whom reside outside the United States. By publishing high-level exposition, the ''Notices'' provides opportunities for mathematicians to find out what is going on in the field. Each issue contains one or two such expository articles that describe current d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]