HOME





Positive Polynomial
In mathematics, a positive polynomial (respectively non-negative polynomial) on a particular set is a polynomial whose values are positive (respectively non-negative) on that set. Precisely, Let p be a polynomial in n variables with real coefficients and let S be a subset of the n-dimensional Euclidean space \mathbb^n. We say that: * p is positive on S if p(x)>0 for every x in S. * p is non-negative on S if p(x)\ge 0 for every x in S. Positivstellensatz (and nichtnegativstellensatz) For certain sets S, there exist algebraic descriptions of all polynomials that are positive (resp. non-negative) on S. Such a description is a positivstellensatz (resp. nichtnegativstellensatz). The importance of Positivstellensatz theorems in computation arises from its ability to transform problems of polynomial optimization into semidefinite programming problems, which can be efficiently solved using convex optimization techniques. Examples of positivstellensatz (and nichtnegativstellensatz) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hilbert's Seventeenth Problem
Hilbert's seventeenth problem is one of the 23 Hilbert problems set out in a celebrated list compiled in 1900 by David Hilbert. It concerns the expression of positive definite rational functions as sums of quotients of squares. The original question may be reformulated as: * Given a multivariate polynomial that takes only non-negative values over the reals, can it be represented as a sum of squares of rational functions? Hilbert's question can be restricted to homogeneous polynomials of even degree, since a polynomial of odd degree changes sign, and the homogenization of a polynomial takes only nonnegative values if and only if the same is true for the polynomial. Motivation The formulation of the question takes into account that there are non-negative polynomials, for example :f(x,y,z)=z^6+x^4y^2+x^2y^4-3x^2y^2z^2, which cannot be represented as a sum of squares of other polynomials. In 1888, Hilbert showed that every non-negative homogeneous polynomial in ''n'' vari ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


O-minimal Structure
In mathematical logic, and more specifically in model theory, an infinite structure (''M'',<,...) that is totally ordered by < is called an o-minimal structure if and only if every definable subset ''X'' ⊆ ''M'' (with parameters taken from ''M'') is a finite union of intervals and points. O-minimality can be regarded as a weak form of . A structure ''M'' is o-minimal if and only if every

Advances In Mathematics
''Advances in Mathematics'' is a peer-reviewed scientific journal covering research on pure mathematics. It was established in 1961 by Gian-Carlo Rota. The journal publishes 18 issues each year, in three volumes. At the origin, the journal aimed at publishing articles addressed to a broader "mathematical community", and not only to mathematicians in the author's field. Herbert Busemann writes, in the preface of the first issue, "The need for expository articles addressing either all mathematicians or only those in somewhat related fields has long been felt, but little has been done outside of the USSR. The serial publication ''Advances in Mathematics'' was created in response to this demand." Abstracting and indexing The journal is abstracted and indexed in:Abstracting and Indexing
*
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Polynomial Matrix
In mathematics, a polynomial matrix or matrix of polynomials is a matrix whose elements are univariate or multivariate polynomials. Equivalently, a polynomial matrix is a polynomial whose coefficients are matrices. A univariate polynomial matrix ''P'' of degree ''p'' is defined as: :P = \sum_^p A(n)x^n = A(0)+A(1)x+A(2)x^2+ \cdots +A(p)x^p where A(i) denotes a matrix of constant coefficients, and A(p) is non-zero. An example 3×3 polynomial matrix, degree 2: : P=\begin 1 & x^2 & x \\ 0 & 2x & 2 \\ 3x+2 & x^2-1 & 0 \end =\begin 1 & 0 & 0 \\ 0 & 0 & 2 \\ 2 & -1 & 0 \end +\begin 0 & 0 & 1 \\ 0 & 2 & 0 \\ 3 & 0 & 0 \endx+\begin 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \endx^2. We can express this by saying that for a ring ''R'', the rings M_n(R and (M_n(R)) /math> are isomorphic. Properties *A polynomial matrix over a field with determinant equal to a non-zero element of that field is called unimodular, and has an inverse that is also a polynomial matrix. Note that the only scalar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Trigonometric Polynomial
In the mathematical subfields of numerical analysis and mathematical analysis, a trigonometric polynomial is a finite linear combination of functions sin(''nx'') and cos(''nx'') with ''n'' taking on the values of one or more natural numbers. The coefficients may be taken as real numbers, for real-valued functions. For complex coefficients, there is no difference between such a function and a finite Fourier series. Trigonometric polynomials are widely used, for example in trigonometric interpolation applied to the interpolation of periodic functions. They are used also in the discrete Fourier transform. The term ''trigonometric polynomial'' for the real-valued case can be seen as using the analogy: the functions sin(''nx'') and cos(''nx'') are similar to the monomial basis for polynomials. In the complex case the trigonometric polynomials are spanned by the positive and negative powers of e^, i.e., Laurent polynomials in z under the change of variables x \mapsto z := e^. Def ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Signomial
A signomial is an algebraic function of one or more independent variables. It is perhaps most easily thought of as an algebraic extension of multivariable polynomials—an extension that permits exponents to be arbitrary real numbers (rather than just non-negative integers) while requiring the independent variables to be strictly positive (so that division by zero and other inappropriate algebraic operations are not encountered). Formally, a signomial is a function with domain \mathbb_^n which takes values : f(x_1, x_2, \dots, x_n) = \sum_^M \left(c_i \prod_^n x_j^\right) where the coefficients c_i and the exponents a_ are real numbers. Signomials are closed under addition, subtraction, multiplication, and scaling. If we restrict all c_i to be positive, then the function f is a posynomial. Consequently, each signomial is either a posynomial, the negative of a posynomial, or the difference of two posynomials. If, in addition, all exponents a_ are non-negative integers, then t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Semialgebraic Set
In mathematics, a basic semialgebraic set is a set defined by polynomial equalities and polynomial inequalities, and a semialgebraic set is a finite union of basic semialgebraic sets. A semialgebraic function is a function with a semialgebraic graph. Such sets and functions are mainly studied in real algebraic geometry which is the appropriate framework for algebraic geometry over the real numbers. Definition Let \mathbb be a real closed field (For example \mathbb could be the field of real numbers \mathbb). A subset S of \mathbb^n is a ''semialgebraic set'' if it is a finite union of sets defined by polynomial equalities of the form \ and of sets defined by polynomial inequalities of the form \. Properties Similarly to algebraic subvarieties, finite unions and intersections of semialgebraic sets are still semialgebraic sets. Furthermore, unlike subvarieties, the complement of a semialgebraic set is again semialgebraic. Finally, and most importantly, the Tarski–Seide ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Farkas Lemma
In mathematics, Farkas' lemma is a solvability theorem for a finite system of linear inequalities. It was originally proven by the Hungarian mathematician Gyula Farkas. Farkas' lemma is the key result underpinning the linear programming duality and has played a central role in the development of mathematical optimization (alternatively, mathematical programming). It is used amongst other things in the proof of the Karush–Kuhn–Tucker theorem in nonlinear programming. Remarkably, in the area of the foundations of quantum theory, the lemma also underlies the complete set of Bell inequalities in the form of necessary and sufficient conditions for the existence of a local hidden-variable theory, given data from any specific set of measurements. Generalizations of the Farkas' lemma are about the solvability theorem for convex inequalities, i.e., infinite system of linear inequalities. Farkas' lemma belongs to a class of statements called "theorems of the alternative": a theor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polytope
In elementary geometry, a polytope is a geometric object with flat sides ('' faces''). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions as an -dimensional polytope or -polytope. For example, a two-dimensional polygon is a 2-polytope and a three-dimensional polyhedron is a 3-polytope. In this context, "flat sides" means that the sides of a -polytope consist of -polytopes that may have -polytopes in common. Some theories further generalize the idea to include such objects as unbounded apeirotopes and tessellations, decompositions or tilings of curved manifolds including spherical polyhedra, and set-theoretic abstract polytopes. Polytopes of more than three dimensions were first discovered by Ludwig Schläfli before 1853, who called such a figure a polyschem. The German term ''Polytop'' was coined by the mathematician Reinhold Hoppe, and was introduced to English mathematic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Integer
An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative integers. The set (mathematics), set of all integers is often denoted by the boldface or blackboard bold The set of natural numbers \mathbb is a subset of \mathbb, which in turn is a subset of the set of all rational numbers \mathbb, itself a subset of the real numbers \mathbb. Like the set of natural numbers, the set of integers \mathbb is Countable set, countably infinite. An integer may be regarded as a real number that can be written without a fraction, fractional component. For example, 21, 4, 0, and −2048 are integers, while 9.75, , 5/4, and Square root of 2, are not. The integers form the smallest Group (mathematics), group and the smallest ring (mathematics), ring containing the natural numbers. In algebraic number theory, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]