HOME





No-slip Condition
In fluid dynamics, the no-slip condition is a Boundary conditions in fluid dynamics, boundary condition which enforces that at a solid boundary, a viscous fluid attains zero bulk velocity. This boundary condition was first proposed by Osborne Reynolds, who observed this behaviour while performing his influential pipe flow experiments. The form of this boundary condition is an example of a Dirichlet boundary condition. In the majority of fluid flows relevant to fluids engineering, the no-slip condition is generally utilised at solid boundaries. This condition often fails for systems which exhibit non-newtonian fluid, non-Newtonian behaviour. Fluids which this condition fails includes common food-stuffs which contain a high fat content, such as mayonnaise or melted cheese. Physical justification The no-slip condition is an empirical assumption that has been useful in modelling many macroscopic experiments. It was one of three alternatives that were the subject of contention in the 19 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fluid Dynamics
In physics, physical chemistry and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids – liquids and gases. It has several subdisciplines, including (the study of air and other gases in motion) and (the study of water and other liquids in motion). Fluid dynamics has a wide range of applications, including calculating forces and moment (physics), moments on aircraft, determining the mass flow rate of petroleum through pipeline transport, pipelines, weather forecasting, predicting weather patterns, understanding nebulae in interstellar space, understanding large scale Geophysical fluid dynamics, geophysical flows involving oceans/atmosphere and Nuclear weapon design, modelling fission weapon detonation. Fluid dynamics offers a systematic structure—which underlies these practical disciplines—that embraces empirical and semi-empirical laws derived from flow measurement and used to solve practical problems. The solution to a fl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Physical Review A
''Physical Review A'' (also known as PRA) is a monthly peer-reviewed scientific journal published by the American Physical Society covering atomic, molecular, and optical physics and quantum information. the editor was Jan M. Rost ( Max Planck Institute for the Physics of Complex Systems). History In 1893, the '' Physical Review'' was established at Cornell University. It was taken over by the American Physical Society (formed in 1899) in 1913. In 1970, ''Physical Review'' was subdivided into ''Physical Review A'', ''B'', ''C'', and ''D''. At that time, section ''A'' was subtitled ''Physical Review A: General Physics''. In 1990, a process was started to split this journal into two, resulting in the creation of '' Physical Review E'' in 1993. Hence, in 1993, ''Physical Review A'' changed its statement of scope to ''Atomic, Molecular and Optical Physics.'' In January 2007, the section of ''Physical Review E'' that published papers on classical optics was merged into ''Physical ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


ScienceWorld
Wolfram Research, Inc. ( ) is an American multinational company that creates computational technology. Wolfram's flagship product is the technical computing program Wolfram Mathematica, first released on June 23, 1988. Other products include WolframAlpha, Wolfram System Modeler, Wolfram Workbench, gridMathematica, Wolfram Finance Platform, webMathematica, the Wolfram Cloud, and the Wolfram Programming Lab. Wolfram Research founder Stephen Wolfram is the CEO. The company is headquartered in Champaign, Illinois, United States. History The company launched Wolfram Alpha, an answer engine on May 16, 2009. It brings a new approach to knowledge generation and acquisition that involves large amounts of curated computable data in addition to semantic indexing of text. Wolfram Research acquired MathCore Engineering AB on March 30, 2011. On July 21, 2011, Wolfram Research launched the Computable Document Format (CDF). CDF is an electronic document format designed to allow eas ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Shell Balance
In fluid mechanics, a shell balance can be used to determine the velocity profile of a moving fluid, i.e,. how fluid velocity changes with position across a flow cross section. A "shell" is a differential element of the flow. By looking at the momentum and forces on one small portion, it is possible to integrate over the flow to see the larger picture of the flow as a whole. The balance is determining what goes into and out of the shell. Momentum is created within the shell through fluid entering and leaving the shell and by shear stress. In addition, there are pressure and gravitational forces on the shell. From this, it is possible to find a velocity for any point across the flow. Applications Shell balances can be used in many situations. For example, flow in a pipe, the flow of multiple fluids around each other, or flow due to pressure difference. Although terms in the shell balance and boundary conditions will change, the basic set up and process is the same. Require ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Shear Stress
Shear stress (often denoted by , Greek alphabet, Greek: tau) is the component of stress (physics), stress coplanar with a material cross section. It arises from the shear force, the component of force vector parallel to the material cross section. ''Normal stress'', on the other hand, arises from the force vector component perpendicular to the material cross section on which it acts. General shear stress The formula to calculate average shear stress or force per unit area is: \tau = ,where is the force applied and is the cross-sectional area. The area involved corresponds to the material face (geometry), face parallel to the applied force vector, i.e., with surface normal vector perpendicular to the force. Other forms Wall shear stress Wall shear stress expresses the retarding force (per unit area) from a wall in the layers of a fluid flowing next to the wall. It is defined as:\tau_w := \mu\left.\frac\_,where is the dynamic viscosity, is the flow velocity, and is the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Wind Gradient
In common usage, wind gradient, more specifically wind speed gradient or wind velocity gradient, or alternatively shear wind, is the vertical component of the gradient of the mean horizontal wind speed in the lower atmosphere. It is the rate of increase of wind strength with unit increase in height above ground level. In metric units, it is often measured in units of meters per second of speed, per kilometer of height (m/s/km), which reduces inverse milliseconds (ms−1), a unit also used for shear rate. Simple explanation Surface friction forces the surface wind to slow and turn near the surface of the Earth, blowing directly towards the low pressure, when compared to the winds in the nearly frictionless flow well above the Earth's surface. This bottom layer, where surface friction slows the wind and changes the wind direction, is known as the planetary boundary layer. Daytime solar heating due to insolation thickens the boundary layer, as air warmed by contact ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Boundary Layer
In physics and fluid mechanics, a boundary layer is the thin layer of fluid in the immediate vicinity of a Boundary (thermodynamic), bounding surface formed by the fluid flowing along the surface. The fluid's interaction with the wall induces a No-slip condition, no-slip boundary condition (zero velocity at the wall). The flow velocity then monotonically increases above the surface until it returns to the bulk flow velocity. The thin layer consisting of fluid whose velocity has not yet returned to the bulk flow velocity is called the velocity boundary layer. The air next to a human is heated, resulting in gravity-induced convective airflow, which results in both a velocity and thermal boundary layer. A breeze disrupts the boundary layer, and hair and clothing protect it, making the human feel cooler or warmer. On an aircraft wing, the velocity boundary layer is the part of the flow close to the wing, where viscosity, viscous forces distort the surrounding non-viscous flow. In ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Contact Angle
The contact angle (symbol ) is the angle between a liquid surface and a solid surface where they meet. More specifically, it is the angle between the surface tangent on the liquid–vapor interface and the tangent on the solid–liquid interface at their intersection. It quantifies the '' wettability'' of a solid surface by a liquid via the Young equation. A given system of solid, liquid, and vapor at a given temperature and pressure has a unique equilibrium contact angle. However, in practice a dynamic phenomenon of contact angle hysteresis is often observed, ranging from the advancing (maximal) contact angle to the receding (minimal) contact angle. The equilibrium contact is within those values, and can be calculated from them. The equilibrium contact angle reflects the relative strength of the liquid, solid, and vapour molecular interaction. The contact angle depends upon the medium above the free surface of the liquid, and the nature of the liquid and solid in contact. It ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Capillary Surface
In fluid mechanics and mathematics, a capillary surface is a surface that represents the interface between two different fluids. As a consequence of being a surface, a capillary surface has no thickness in slight contrast with most real fluid interfaces. Capillary surfaces are of interest in mathematics because the problems involved are very nonlinear and have interesting properties, such as discontinuous dependence on boundary data at isolated points. In particular, static capillary surfaces with gravity absent have constant mean curvature, so that a minimal surface is a special case of static capillary surface. They are also of practical interest for fluid management in space (or other environments free of body forces), where both flow and static configuration are often dominated by capillary effects. The stress balance equation The defining equation for a capillary surface is called the stress balance equation, which can be derived by considering the forces and stresses acting ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Boundary Layer
In physics and fluid mechanics, a boundary layer is the thin layer of fluid in the immediate vicinity of a Boundary (thermodynamic), bounding surface formed by the fluid flowing along the surface. The fluid's interaction with the wall induces a No-slip condition, no-slip boundary condition (zero velocity at the wall). The flow velocity then monotonically increases above the surface until it returns to the bulk flow velocity. The thin layer consisting of fluid whose velocity has not yet returned to the bulk flow velocity is called the velocity boundary layer. The air next to a human is heated, resulting in gravity-induced convective airflow, which results in both a velocity and thermal boundary layer. A breeze disrupts the boundary layer, and hair and clothing protect it, making the human feel cooler or warmer. On an aircraft wing, the velocity boundary layer is the part of the flow close to the wing, where viscosity, viscous forces distort the surrounding non-viscous flow. In ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Inviscid Flow
In fluid dynamics, inviscid flow is the flow of an ''inviscid fluid'' which is a fluid with zero viscosity. The Reynolds number of inviscid flow approaches infinity as the viscosity approaches zero. When viscous forces are neglected, such as the case of inviscid flow, the Navier–Stokes equation can be simplified to a form known as the Euler equation. This simplified equation is applicable to inviscid flow as well as flow with low viscosity and a Reynolds number much greater than one. Using the Euler equation, many fluid dynamics problems involving low viscosity are easily solved, however, the assumed negligible viscosity is no longer valid in the region of fluid near a solid boundary (the boundary layer) or, more generally in regions with large velocity gradients which are evidently accompanied by viscous forces. The flow of a superfluid is inviscid. Inviscid flows are broadly classified into potential flows (or, irrotational flows) and rotational inviscid flows. Prandtl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Viscosity
Viscosity is a measure of a fluid's rate-dependent drag (physics), resistance to a change in shape or to movement of its neighboring portions relative to one another. For liquids, it corresponds to the informal concept of ''thickness''; for example, syrup has a higher viscosity than water. Viscosity is defined scientifically as a force multiplied by a time divided by an area. Thus its SI units are newton-seconds per metre squared, or pascal-seconds. Viscosity quantifies the internal friction, frictional force between adjacent layers of fluid that are in relative motion. For instance, when a viscous fluid is forced through a tube, it flows more quickly near the tube's center line than near its walls. Experiments show that some stress (physics), stress (such as a pressure difference between the two ends of the tube) is needed to sustain the flow. This is because a force is required to overcome the friction between the layers of the fluid which are in relative motion. For a tube ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]