HOME





Multilinear Polynomial
In algebra, a multilinear polynomial is a multivariate polynomial that is linear (meaning affine) in each of its variables separately, but not necessarily simultaneously. It is a polynomial in which no variable occurs to a power of 2 or higher; that is, each monomial is a constant times a product of distinct variables. For example f(x,y,z) = 3xy + 2.5 y - 7z is a multilinear polynomial of degree 2 (because of the monomial 3xy) whereas f(x,y,z) = x^2 +4y is not. The degree of a multilinear polynomial is the maximum number of distinct variables occurring in any monomial. Definition Multilinear polynomials can be understood as a multilinear map (specifically, a multilinear form) applied to the vectors x y etc. The general form can be written as a tensor contraction:f(x) = \sum_^1\sum_^1\cdots\sum_^1 a_x_1^x_2^\cdots x_n^ For example, in two variables:f(x,y) = \sum_^1\sum_^1 a_x^y^ = a_ + a_x + a_y + a_xy = \begin1&x\end\begina_&a_\\a_&a_\end\begin1\\y\end Properties A mul ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Multivariate Function
In mathematics, a function from a set to a set assigns to each element of exactly one element of .; the words ''map'', ''mapping'', ''transformation'', ''correspondence'', and ''operator'' are sometimes used synonymously. The set is called the domain of the function and the set is called the codomain of the function. Functions were originally the idealization of how a varying quantity depends on another quantity. For example, the position of a planet is a ''function'' of time. Historically, the concept was elaborated with the infinitesimal calculus at the end of the 17th century, and, until the 19th century, the functions that were considered were differentiable (that is, they had a high degree of regularity). The concept of a function was formalized at the end of the 19th century in terms of set theory, and this greatly increased the possible applications of the concept. A function is often denoted by a letter such as , or . The value of a function at an element of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Domain Of A Function
In mathematics, the domain of a function is the Set (mathematics), set of inputs accepted by the Function (mathematics), function. It is sometimes denoted by \operatorname(f) or \operatornamef, where is the function. In layman's terms, the domain of a function can generally be thought of as "what x can be". More precisely, given a function f\colon X\to Y, the domain of is . In modern mathematical language, the domain is part of the definition of a function rather than a property of it. In the special case that and are both sets of real numbers, the function can be graphed in the Cartesian coordinate system. In this case, the domain is represented on the -axis of the graph, as the projection of the graph of the function onto the -axis. For a function f\colon X\to Y, the set is called the ''codomain'': the set to which all outputs must belong. The set of specific outputs the function assigns to elements of is called its ''Range of a function, range'' or ''Image (mathematic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Möbius Transform
Moebius, Mœbius, Möbius or Mobius may refer to: People * August Ferdinand Möbius (1790–1868), German mathematician and astronomer * Friedrich Möbius (art historian) (1928–2024), German art historian and architectural historian * Theodor Möbius (1821–1890), German philologist, son of August Ferdinand * Karl Möbius (1825–1908), German zoologist and ecologist * Paul Julius Möbius (1853–1907), German neurologist, grandson of August Ferdinand * Dieter Moebius (1944–2015), Swiss-born German musician * Mark Mobius (born 1936), emerging markets investments pioneer * Jean Giraud (1938–2012), French comics artist who used the pseudonym Mœbius Fictional characters * Mobius M. Mobius, a character in Marvel Comics * Mobius, also known as the Anti-Monitor, a supervillain in DC Comics * Johann Wilhelm Möbius, a character in the play '' The Physicists'' * Moebius, the main antagonistic faction in the video game ''Xenoblade Chronicles 3'' * Mobius, or Dr. Ignatio Mobius, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Linear Transformation
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that preserves the operations of vector addition and scalar multiplication. The same names and the same definition are also used for the more general case of modules over a ring; see Module homomorphism. If a linear map is a bijection then it is called a . In the case where V = W, a linear map is called a linear endomorphism. Sometimes the term refers to this case, but the term "linear operator" can have different meanings for different conventions: for example, it can be used to emphasize that V and W are real vector spaces (not necessarily with V = W), or it can be used to emphasize that V is a function space, which is a common convention in functional analysis. Sometimes the term ''linear function'' has the same meaning as ''linear map' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gradient
In vector calculus, the gradient of a scalar-valued differentiable function f of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p gives the direction and the rate of fastest increase. The gradient transforms like a vector under change of basis of the space of variables of f. If the gradient of a function is non-zero at a point p, the direction of the gradient is the direction in which the function increases most quickly from p, and the magnitude of the gradient is the rate of increase in that direction, the greatest absolute directional derivative. Further, a point where the gradient is the zero vector is known as a stationary point. The gradient thus plays a fundamental role in optimization theory, where it is used to minimize a function by gradient descent. In coordinate-free terms, the gradient of a function f(\mathbf) may be defined by: df=\nabla f \cdot d\mathbf where df is the total infinitesimal change in f for a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mean Of A Function
In calculus, and especially multivariable calculus, the mean of a function is loosely defined as the ”average" value of the function over its domain. One-dimensional In a one-dimensional domain, the mean of a function ''f''(''x'') over the interval (''a'',''b'') is defined by: : \bar=\frac\int_a^bf(x)\,dx. Recall that a defining property of the average value \bar of finitely many numbers y_1, y_2, \dots, y_n is that n\bar = y_1 + y_2 + \cdots + y_n. In other words, \bar is the ''constant'' value which when ''added'' n times equals the result of adding the n terms y_1, \dots, y_n. By analogy, a defining property of the average value \bar of a function over the interval ,b/math> is that : \int_a^b\bar\,dx = \int_a^bf(x)\,dx . In other words, \bar is the ''constant'' value which when '' integrated'' over ,b/math> equals the result of integrating f(x) over ,b/math>. But the integral of a constant \bar is just : \int_a^b\bar\,dx = \barx\bigr, _a^b = \barb - \bara = (b - a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Arithmetic Mean
In mathematics and statistics, the arithmetic mean ( ), arithmetic average, or just the ''mean'' or ''average'' is the sum of a collection of numbers divided by the count of numbers in the collection. The collection is often a set of results from an experiment, an observational study, or a Survey (statistics), survey. The term "arithmetic mean" is preferred in some contexts in mathematics and statistics because it helps to distinguish it from other types of means, such as geometric mean, geometric and harmonic mean, harmonic. Arithmetic means are also frequently used in economics, anthropology, history, and almost every other academic field to some extent. For example, per capita income is the arithmetic average of the income of a nation's Human population, population. While the arithmetic mean is often used to report central tendency, central tendencies, it is not a robust statistic: it is greatly influenced by outliers (Value (mathematics), values much larger or smaller than ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hyperrectangle
In geometry, a hyperrectangle (also called a box, hyperbox, k-cell or orthotopeCoxeter, 1973), is the generalization of a rectangle (a plane figure) and the rectangular cuboid (a solid figure) to higher dimensions. A necessary and sufficient condition is that it is Congruence (geometry), congruent to the Cartesian product of finite interval (mathematics), intervals. This means that a k-dimensional rectangular solid has each of its edges equal to one of the closed intervals used in the definition. Every k-cell is compact (mathematics), compact. If all of the edges are equal length, it is a ''hypercube''. A hyperrectangle is a special case of a parallelohedron#Related shapes, parallelotope. Formal definition For every integer i from 1 to k, let a_i and b_i be real numbers such that a_i < b_i. The set of all points x=(x_1,\dots,x_k) in \mathbb^k whose coordinates satisfy the inequalities a_i\leq x_i\leq b_i is a k-cell.
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Generalized Barycentric Coordinates
In geometry, a barycentric coordinate system is a coordinate system in which the location of a point is specified by reference to a simplex (a triangle for points in a plane, a tetrahedron for points in three-dimensional space, etc.). The barycentric coordinates of a point can be interpreted as masses placed at the vertices of the simplex, such that the point is the center of mass (or ''barycenter'') of these masses. These masses can be zero or negative; they are all positive if and only if the point is inside the simplex. Every point has barycentric coordinates, and their sum is never zero. Two tuples of barycentric coordinates specify the same point if and only if they are proportional; that is to say, if one tuple can be obtained by multiplying the elements of the other tuple by the same non-zero number. Therefore, barycentric coordinates are either considered to be defined up to multiplication by a nonzero constant, or normalized for summing to unity. Barycentric coordinat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Lagrange Polynomial
In numerical analysis, the Lagrange interpolating polynomial is the unique polynomial of lowest degree that interpolates a given set of data. Given a data set of coordinate pairs (x_j, y_j) with 0 \leq j \leq k, the x_j are called ''nodes'' and the y_j are called ''values''. The Lagrange polynomial L(x) has degree \leq k and assumes each value at the corresponding node, L(x_j) = y_j. Although named after Joseph-Louis Lagrange, who published it in 1795, the method was first discovered in 1779 by Edward Waring. It is also an easy consequence of a formula published in 1783 by Leonhard Euler. Uses of Lagrange polynomials include the Newton–Cotes method of numerical integration, Shamir's secret sharing scheme in cryptography, and Reed–Solomon error correction in coding theory. For equispaced nodes, Lagrange interpolation is susceptible to Runge's phenomenon of large oscillation. Definition Given a set of k + 1 nodes \, which must all be distinct, x_j \neq x_m for ind ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Laplace's Equation
In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties in 1786. This is often written as \nabla^2\! f = 0 or \Delta f = 0, where \Delta = \nabla \cdot \nabla = \nabla^2 is the Laplace operator,The delta symbol, Δ, is also commonly used to represent a finite change in some quantity, for example, \Delta x = x_1 - x_2. Its use to represent the Laplacian should not be confused with this use. \nabla \cdot is the divergence operator (also symbolized "div"), \nabla is the gradient operator (also symbolized "grad"), and f (x, y, z) is a twice-differentiable real-valued function. The Laplace operator therefore maps a scalar function to another scalar function. If the right-hand side is specified as a given function, h(x, y, z), we have \Delta f = h This is called Poisson's equation, a generalization of Laplace's equation. Laplace's equation and Poisson's equation are the simp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Linear Interpolation
In mathematics, linear interpolation is a method of curve fitting using linear polynomials to construct new data points within the range of a discrete set of known data points. Linear interpolation between two known points If the two known points are given by the coordinates (x_0,y_0) and the linear interpolant is the straight line between these points. For a value x in the interval the value y along the straight line is given from the equation of slopes \frac = \frac, which can be derived geometrically from the figure on the right. It is a special case of polynomial interpolation with Solving this equation for y, which is the unknown value at x, gives \begin y &= y_0 + (x-x_0)\frac \\ &= \frac + \frac\\ &= \frac \\ &= \frac, \end which is the formula for linear interpolation in the interval Outside this interval, the formula is identical to linear extrapolation. This formula can also be understood as a weighted average. The weights are inversely related to the dist ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]