HOME



picture info

Monomorphisms
In the context of abstract algebra or universal algebra, a monomorphism is an injective homomorphism. A monomorphism from to is often denoted with the notation X\hookrightarrow Y. In the more general setting of category theory, a monomorphism (also called a monic morphism or a mono) is a left-cancellative morphism. That is, an arrow such that for all objects and all morphisms , : f \circ g_1 = f \circ g_2 \implies g_1 = g_2. Monomorphisms are a categorical generalization of injective functions (also called "one-to-one functions"); in some categories the notions coincide, but monomorphisms are more general, as in the examples below. In the setting of posets intersections are idempotent: the intersection of anything with itself is itself. Monomorphisms generalize this property to arbitrary categories. A morphism is a monomorphism if it is idempotent with respect to pullbacks. The categorical dual of a monomorphism is an epimorphism, that is, a monomorphism in a category ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Monomorphism Scenarios
In the context of abstract algebra or universal algebra, a monomorphism is an Injective function, injective homomorphism. A monomorphism from to is often denoted with the notation X\hookrightarrow Y. In the more general setting of category theory, a monomorphism (also called a monic morphism or a mono) is a left-cancellative morphism. That is, an arrow such that for all objects and all morphisms , : f \circ g_1 = f \circ g_2 \implies g_1 = g_2. Monomorphisms are a categorical generalization of injective functions (also called "one-to-one functions"); in some categories the notions coincide, but monomorphisms are more general, as in the #Examples, examples below. In the setting of Partially ordered set, posets intersections are Idempotence, idempotent: the intersection of anything with itself is itself. Monomorphisms generalize this property to arbitrary categories. A morphism is a monomorphism if it is idempotent with respect to Pullback (category theory), pullbacks. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Monomorphism Pullback Square
In the context of abstract algebra or universal algebra, a monomorphism is an injective homomorphism. A monomorphism from to is often denoted with the notation X\hookrightarrow Y. In the more general setting of category theory, a monomorphism (also called a monic morphism or a mono) is a left-cancellative morphism. That is, an arrow such that for all objects and all morphisms , : f \circ g_1 = f \circ g_2 \implies g_1 = g_2. Monomorphisms are a categorical generalization of injective functions (also called "one-to-one functions"); in some categories the notions coincide, but monomorphisms are more general, as in the examples below. In the setting of posets intersections are idempotent: the intersection of anything with itself is itself. Monomorphisms generalize this property to arbitrary categories. A morphism is a monomorphism if it is idempotent with respect to pullbacks. The categorical dual of a monomorphism is an epimorphism, that is, a monomorphism in a categor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Abelian Category
In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties. The motivating prototypical example of an abelian category is the category of abelian groups, . Abelian categories are very ''stable'' categories; for example they are regular and they satisfy the snake lemma. The class of abelian categories is closed under several categorical constructions, for example, the category of chain complexes of an abelian category, or the category of functors from a small category to an abelian category are abelian as well. These stability properties make them inevitable in homological algebra and beyond; the theory has major applications in algebraic geometry, cohomology and pure category theory. Mac Lane says Alexander Grothendieck defined the abelian category, but there is a reference that says Eilenberg's disciple, Buchsbaum, proposed the concept in his PhD thesis, and Groth ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Epimorphism
In category theory, an epimorphism is a morphism ''f'' : ''X'' → ''Y'' that is right-cancellative in the sense that, for all objects ''Z'' and all morphisms , : g_1 \circ f = g_2 \circ f \implies g_1 = g_2. Epimorphisms are categorical analogues of onto or surjective functions (and in the category of sets the concept corresponds exactly to the surjective functions), but they may not exactly coincide in all contexts; for example, the inclusion \mathbb\to\mathbb is a ring epimorphism. The dual of an epimorphism is a monomorphism (i.e. an epimorphism in a category ''C'' is a monomorphism in the dual category ''C''op). Many authors in abstract algebra and universal algebra define an epimorphism simply as an ''onto'' or surjective homomorphism. Every epimorphism in this algebraic sense is an epimorphism in the sense of category theory, but the converse is not true in all categories. In this article, the term "epimorphism" will be used in the sense of category theory given ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Morphism
In mathematics, a morphism is a concept of category theory that generalizes structure-preserving maps such as homomorphism between algebraic structures, functions from a set to another set, and continuous functions between topological spaces. Although many examples of morphisms are structure-preserving maps, morphisms need not to be maps, but they can be composed in a way that is similar to function composition. Morphisms and objects are constituents of a category. Morphisms, also called ''maps'' or ''arrows'', relate two objects called the ''source'' and the ''target'' of the morphism. There is a partial operation, called ''composition'', on the morphisms of a category that is defined if the target of the first morphism equals the source of the second morphism. The composition of morphisms behaves like function composition ( associativity of composition when it is defined, and existence of an identity morphism for every object). Morphisms and categories recur in much of co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Section (category Theory)
In category theory, a branch of mathematics, a section is a right inverse of some morphism. Dually, a retraction is a left inverse of some morphism. In other words, if f: X\to Y and g: Y\to X are morphisms whose composition f \circ g: Y\to Y is the identity morphism on Y, then g is a section of f, and f is a retraction of g. Every section is a monomorphism (every morphism with a left inverse is left-cancellative), and every retraction is an epimorphism (every morphism with a right inverse is right-cancellative). In algebra, sections are also called split monomorphisms and retractions are also called split epimorphisms. In an abelian category, if f: X\to Y is a split epimorphism with split monomorphism g: Y\to X, then X is isomorphic to the direct sum of Y and the kernel of f. The synonym coretraction for section is sometimes seen in the literature, although rarely in recent work. Properties * A section that is also an epimorphism is an isomorphism. Dually a retracti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pullback (category Theory)
In category theory, a branch of mathematics, a pullback (also called a fiber product, fibre product, fibered product or Cartesian square) is the limit (category theory), limit of a diagram (category theory), diagram consisting of two morphisms and with a common codomain. The pullback is written :. Usually the morphisms and are omitted from the notation, and then the pullback is written :. The pullback comes equipped with two natural morphisms and . The pullback of two morphisms and need not exist, but if it does, it is essentially uniquely defined by the two morphisms. In many situations, may intuitively be thought of as consisting of pairs of elements with in , in , and . For the general definition, a universal property is used, which essentially expresses the fact that the pullback is the "most general" way to complete the two given morphisms to a commutative diagram, commutative square. The Dual (category theory), dual concept of the pullback is the ''Pushout ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Section (category Theory)
In category theory, a branch of mathematics, a section is a right inverse of some morphism. Dually, a retraction is a left inverse of some morphism. In other words, if f: X\to Y and g: Y\to X are morphisms whose composition f \circ g: Y\to Y is the identity morphism on Y, then g is a section of f, and f is a retraction of g. Every section is a monomorphism (every morphism with a left inverse is left-cancellative), and every retraction is an epimorphism (every morphism with a right inverse is right-cancellative). In algebra, sections are also called split monomorphisms and retractions are also called split epimorphisms. In an abelian category, if f: X\to Y is a split epimorphism with split monomorphism g: Y\to X, then X is isomorphic to the direct sum of Y and the kernel of f. The synonym coretraction for section is sometimes seen in the literature, although rarely in recent work. Properties * A section that is also an epimorphism is an isomorphism. Dually a retracti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Retract (category Theory)
In category theory, a branch of mathematics, a section is a right inverse of some morphism. Dually, a retraction is a left inverse of some morphism. In other words, if f: X\to Y and g: Y\to X are morphisms whose composition f \circ g: Y\to Y is the identity morphism on Y, then g is a section of f, and f is a retraction of g. Every section is a monomorphism (every morphism with a left inverse is left-cancellative), and every retraction is an epimorphism (every morphism with a right inverse is right-cancellative). In algebra, sections are also called split monomorphisms and retractions are also called split epimorphisms. In an abelian category, if f: X\to Y is a split epimorphism with split monomorphism g: Y\to X, then X is isomorphic to the direct sum of Y and the kernel of f. The synonym coretraction for section is sometimes seen in the literature, although rarely in recent work. Properties * A section that is also an epimorphism is an isomorphism. Dually a retraction tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Homomorphism
In algebra, a homomorphism is a morphism, structure-preserving map (mathematics), map between two algebraic structures of the same type (such as two group (mathematics), groups, two ring (mathematics), rings, or two vector spaces). The word ''homomorphism'' comes from the Ancient Greek language: () meaning "same" and () meaning "form" or "shape". However, the word was apparently introduced to mathematics due to a (mis)translation of German meaning "similar" to meaning "same". The term "homomorphism" appeared as early as 1892, when it was attributed to the German mathematician Felix Klein (1849–1925). Homomorphisms of vector spaces are also called linear maps, and their study is the subject of linear algebra. The concept of homomorphism has been generalized, under the name of morphism, to many other structures that either do not have an underlying set, or are not algebraic. This generalization is the starting point of category theory. A homomorphism may also be an isomorphis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Free Object
In mathematics, the idea of a free object is one of the basic concepts of abstract algebra. Informally, a free object over a set ''A'' can be thought of as being a "generic" algebraic structure over ''A'': the only equations that hold between elements of the free object are those that follow from the defining axioms of the algebraic structure. Examples include free groups, tensor algebras, or free lattices. The concept is a part of universal algebra, in the sense that it relates to all types of algebraic structure (with finitary operations). It also has a formulation in terms of category theory, although this is in yet more abstract terms. Definition Free objects are the direct generalization to categories of the notion of basis in a vector space. A linear function between vector spaces is entirely determined by its values on a basis of the vector space The following definition translates this to any category. A concrete category is a category that is equipped with a faithf ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Function (mathematics)
In mathematics, a function from a set (mathematics), set to a set assigns to each element of exactly one element of .; the words ''map'', ''mapping'', ''transformation'', ''correspondence'', and ''operator'' are sometimes used synonymously. The set is called the Domain of a function, domain of the function and the set is called the codomain of the function. Functions were originally the idealization of how a varying quantity depends on another quantity. For example, the position of a planet is a ''function'' of time. History of the function concept, Historically, the concept was elaborated with the infinitesimal calculus at the end of the 17th century, and, until the 19th century, the functions that were considered were differentiable function, differentiable (that is, they had a high degree of regularity). The concept of a function was formalized at the end of the 19th century in terms of set theory, and this greatly increased the possible applications of the concept. A f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]