Monodromy Operator
In mathematics, and particularly ordinary differential equations (ODEs), a monodromy matrix is the fundamental matrix (linear differential equation), fundamental matrix of a system of ODEs evaluated at the period of the coefficients of the system. It is used for the analysis of periodic solutions of ODEs in Floquet theory. See also *Floquet theory *Monodromy *Riemann–Hilbert problem References * * Ordinary differential equations {{mathanalysis-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ordinary Differential Equations
In mathematics, an ordinary differential equation (ODE) is a differential equation (DE) dependent on only a single independent variable. As with any other DE, its unknown(s) consists of one (or more) function(s) and involves the derivatives of those functions. The term "ordinary" is used in contrast with ''partial'' differential equations (PDEs) which may be with respect to one independent variable, and, less commonly, in contrast with ''stochastic'' differential equations (SDEs) where the progression is random. Differential equations A linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form :a_0(x)y +a_1(x)y' + a_2(x)y'' +\cdots +a_n(x)y^+b(x)=0, where a_0(x),\ldots,a_n(x) and b(x) are arbitrary differentiable functions that do not need to be linear, and y',\ldots, y^ are the successive derivatives of the unknown function y of the variable x. Among ord ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fundamental Matrix (linear Differential Equation)
In mathematics, a fundamental matrix of a system of ''n'' homogeneous linear ordinary differential equations \dot(t) = A(t) \mathbf(t) is a matrix-valued function \Psi(t) whose columns are linearly independent solutions of the system. Then every solution to the system can be written as \mathbf(t) = \Psi(t) \mathbf, for some constant vector \mathbf (written as a column vector of height ). A matrix-valued function \Psi is a fundamental matrix of \dot(t) = A(t) \mathbf(t) if and only if \dot(t) = A(t) \Psi(t) and \Psi is a non-singular matrix for all Control theory The fundamental matrix is used to express the state-transition matrix, an essential component in the solution of a system of linear ordinary differential equations. See also * Flow *Linear differential equation *Liouville's formula In mathematics, Liouville's formula, also known as the Abel–Jacobi–Liouville identity, is an equation that expresses the determinant of a square-matrix solution of a first-o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Floquet Theory
Floquet theory is a branch of the theory of ordinary differential equations relating to the class of solutions to periodic linear differential equations of the form :\dot = A(t) x, with x\in and \displaystyle A(t) \in being a piecewise continuous periodic function with period T and defines the state of the stability of solutions. The main theorem of Floquet theory, Floquet's theorem, due to , gives a canonical form for each fundamental matrix solution of this common linear system. It gives a coordinate change \displaystyle y=Q^(t)x with \displaystyle Q(t+2T)=Q(t) that transforms the periodic system to a traditional linear system with constant, real coefficients. When applied to physical systems with periodic potentials, such as crystals in condensed matter physics, the result is known as Bloch's theorem. Note that the solutions of the linear differential equation form a vector space. A matrix \phi\,(t) is called a '' fundamental matrix solution'' if the columns form a basi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Monodromy
In mathematics, monodromy is the study of how objects from mathematical analysis, algebraic topology, algebraic geometry and differential geometry behave as they "run round" a singularity. As the name implies, the fundamental meaning of ''monodromy'' comes from "running round singly". It is closely associated with covering maps and their degeneration into ramification; the aspect giving rise to monodromy phenomena is that certain functions we may wish to define fail to be ''single-valued'' as we "run round" a path encircling a singularity. The failure of monodromy can be measured by defining a monodromy group: a group of transformations acting on the data that encodes what happens as we "run round" in one dimension. Lack of monodromy is sometimes called ''polydromy''. Definition Let X be a connected and locally connected based topological space with base point x, and let p: \tilde \to X be a covering with fiber F = p^(x). For a loop \gamma: , 1\to X based at x, denote a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Riemann–Hilbert Problem
In mathematics, Riemann–Hilbert problems, named after Bernhard Riemann and David Hilbert, are a class of problems that arise in the study of differential equations in the complex plane. Several existence theorems for Riemann–Hilbert problems have been produced by Mark Krein, Israel Gohberg and others. The Riemann problem Suppose that \Sigma is a smooth, simple, closed contour in the complex plane. Divide the plane into two parts denoted by \Sigma_ (the inside) and \Sigma_ (the outside), determined by the index of the contour with respect to a point. The classical problem, considered in Riemann's PhD dissertation, was that of finding a function :M_+(t) = u(t) + i v(t), analytic inside \Sigma_, such that the boundary values of M_+ along \Sigma satisfy the equation :a(t)u(t) - b(t)v(t) = c(t), for t \in \Sigma, where a(t), b(t) and c(t) are given real-valued functions. For example, in the special case where a = 1, b=0 and \Sigma is a circle, the problem reduces to deriving ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
American Mathematical Society
The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings, advocacy and other programs. The society is one of the four parts of the Joint Policy Board for Mathematics and a member of the Conference Board of the Mathematical Sciences. History The AMS was founded in 1888 as the New York Mathematical Society, the brainchild of Thomas Fiske, who was impressed by the London Mathematical Society on a visit to England. John Howard Van Amringe became the first president while Fiske became secretary. The society soon decided to publish a journal, but ran into some resistance over concerns about competing with the '' American Journal of Mathematics''. The result was the ''Bulletin of the American Mathematical Society'', with Fiske as editor-in-chief. The de facto journal, as intended, was influentia ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Providence, Rhode Island
Providence () is the List of capitals in the United States, capital and List of municipalities in Rhode Island, most populous city of the U.S. state of Rhode Island. The county seat of Providence County, Rhode Island, Providence County, it is one of the oldest cities in New England, founded in 1636 by Roger Williams, a Reformed Baptist theologian and religious exile from the Massachusetts Bay Colony. He named the area in honor of "God's merciful Providence" which he believed was responsible for revealing such a haven for him and his followers. The city developed as a busy port, as it is situated at the mouth of the Providence River at the head of Narragansett Bay. Providence was one of the first cities in the country to industrialize and became noted for its textile manufacturing and subsequent machine tool, jewelry, and silverware industries. Today, the city of Providence is home to eight hospitals and List of colleges and universities in Rhode Island#Institutions, eight instit ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |