Medoid
Medoids are representative objects of a data set or a cluster within a data set whose sum of dissimilarities to all the objects in the cluster is minimal. Medoids are similar in concept to means or centroids, but medoids are always restricted to be members of the data set. Medoids are most commonly used on data when a mean or centroid cannot be defined, such as graphs. They are also used in contexts where the centroid is not representative of the dataset like in images, 3-D trajectories and gene expression (where while the data is sparse the medoid need not be). These are also of interest while wanting to find a representative using some distance other than squared euclidean distance (for instance in movie-ratings). For some data sets there may be more than one medoid, as with medians. A common application of the medoid is the k-medoids clustering algorithm, which is similar to the k-means algorithm but works when a mean or centroid is not definable. This algorithm basically work ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
K-medoid
-medoids is a classical partitioning technique of clustering that splits the data set of objects into clusters, where the number of clusters assumed known ''a priori'' (which implies that the programmer must specify k before the execution of a -medoids algorithm). The "goodness" of the given value of can be assessed with methods such as the silhouette method. The name of the clustering method was coined by Leonard Kaufman and Peter J. Rousseeuw with their PAM (Partitioning Around Medoids) algorithm. The medoid of a cluster is defined as the object in the cluster whose sum (and, equivalently, the average) of dissimilarities to all the objects in the cluster is minimal, that is, it is a most centrally located point in the cluster. Unlike certain objects used by other algorithms, the medoid is an actual point in the cluster. Algorithms In general, the -medoids problem is NP-hard to solve exactly. As such, multiple heuristics to optimize this problem exist. Partitioning Arou ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hierarchical Clustering
In data mining and statistics, hierarchical clustering (also called hierarchical cluster analysis or HCA) is a method of cluster analysis that seeks to build a hierarchy of clusters. Strategies for hierarchical clustering generally fall into two categories: * Agglomerative: Agglomerative: Agglomerative clustering, often referred to as a "bottom-up" approach, begins with each data point as an individual cluster. At each step, the algorithm merges the two most similar clusters based on a chosen distance metric (e.g., Euclidean distance) and linkage criterion (e.g., single-linkage, complete-linkage). This process continues until all data points are combined into a single cluster or a stopping criterion is met. Agglomerative methods are more commonly used due to their simplicity and computational efficiency for small to medium-sized datasets . * Divisive: Divisive clustering, known as a "top-down" approach, starts with all data points in a single cluster and recursively splits the clu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
K-means Clustering
''k''-means clustering is a method of vector quantization, originally from signal processing, that aims to partition of a set, partition ''n'' observations into ''k'' clusters in which each observation belongs to the cluster (statistics), cluster with the nearest mean (cluster centers or cluster centroid), serving as a prototype of the cluster. This results in a partitioning of the data space into Voronoi cells. ''k''-means clustering minimizes within-cluster variances (squared Euclidean distances), but not regular Euclidean distances, which would be the more difficult Weber problem: the mean optimizes squared errors, whereas only the geometric median minimizes Euclidean distances. For instance, better Euclidean solutions can be found using k-medians clustering, ''k''-medians and k-medoids, ''k''-medoids. The problem is computationally difficult (NP-hardness, NP-hard); however, efficient heuristic algorithms converge quickly to a local optimum. These are usually similar to the ex ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Centroid
In mathematics and physics, the centroid, also known as geometric center or center of figure, of a plane figure or solid figure is the arithmetic mean position of all the points in the figure. The same definition extends to any object in n-dimensional Euclidean space. In geometry, one often assumes uniform mass density, in which case the '' barycenter'' or ''center of mass'' coincides with the centroid. Informally, it can be understood as the point at which a cutout of the shape (with uniformly distributed mass) could be perfectly balanced on the tip of a pin. In physics, if variations in gravity are considered, then a '' center of gravity'' can be defined as the weighted mean of all points weighted by their specific weight. In geography, the centroid of a radial projection of a region of the Earth's surface to sea level is the region's geographical center. History The term "centroid" was coined in 1814. It is used as a substitute for the older terms "center of grav ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Median
The median of a set of numbers is the value separating the higher half from the lower half of a Sample (statistics), data sample, a statistical population, population, or a probability distribution. For a data set, it may be thought of as the “middle" value. The basic feature of the median in describing data compared to the Arithmetic mean, mean (often simply described as the "average") is that it is not Skewness, skewed by a small proportion of extremely large or small values, and therefore provides a better representation of the center. Median income, for example, may be a better way to describe the center of the income distribution because increases in the largest incomes alone have no effect on the median. For this reason, the median is of central importance in robust statistics. Median is a 2-quantile; it is the value that partitions a set into two equal parts. Finite set of numbers The median of a finite list of numbers is the "middle" number, when those numbers are liste ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Geometric Median
In geometry, the geometric median of a discrete point set in a Euclidean space is the point minimizing the sum of distances to the sample points. This generalizes the median, which has the property of minimizing the sum of distances or absolute differences for one-dimensional data. It is also known as the spatial median, Euclidean minisum point, Torricelli point, or 1-median. It provides a measure of central tendency in higher dimensions and it is a standard problem in facility location, i.e., locating a facility to minimize the cost of transportation. The geometric median is an important estimator of location in statistics, because it minimizes the sum of the ''L''2 distances of the samples. It is to be compared to the mean, which minimizes the sum of the ''squared'' ''L''2 distances; and to the coordinate-wise median which minimizes the sum of the ''L''1 distances. The more general ''k''-median problem asks for the location of ''k'' cluster centers minimizing the sum o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
K-means
''k''-means clustering is a method of vector quantization, originally from signal processing, that aims to partition of a set, partition ''n'' observations into ''k'' clusters in which each observation belongs to the cluster (statistics), cluster with the nearest mean (cluster centers or cluster centroid), serving as a prototype of the cluster. This results in a partitioning of the data space into Voronoi cells. ''k''-means clustering minimizes within-cluster variances (squared Euclidean distances), but not regular Euclidean distances, which would be the more difficult Weber problem: the mean optimizes squared errors, whereas only the geometric median minimizes Euclidean distances. For instance, better Euclidean solutions can be found using k-medians clustering, ''k''-medians and k-medoids, ''k''-medoids. The problem is computationally difficult (NP-hardness, NP-hard); however, efficient heuristic algorithms converge quickly to a local optimum. These are usually similar to the ex ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Centroids
In mathematics and physics, the centroid, also known as geometric center or center of figure, of a plane figure or solid figure is the arithmetic mean position of all the points in the figure. The same definition extends to any object in n-dimensional Euclidean space. In geometry, one often assumes uniform mass density, in which case the ''barycenter'' or ''center of mass'' coincides with the centroid. Informally, it can be understood as the point at which a cutout of the shape (with uniformly distributed mass) could be perfectly balanced on the tip of a pin. In physics, if variations in gravity are considered, then a ''center of gravity'' can be defined as the weighted mean of all points weighted by their specific weight. In geography, the centroid of a radial projection of a region of the Earth's surface to sea level is the region's geographical center. History The term "centroid" was coined in 1814. It is used as a substitute for the older terms "center of gravity" and "c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |