Median Of Medians
In computer science, the median of medians is an approximate median selection algorithm, frequently used to supply a good pivot for an exact selection algorithm, most commonly quickselect, that selects the ''k''th smallest element of an initially unsorted array. Median of medians finds an approximate median in linear time. Using this approximate median as an improved pivot, the worst-case complexity of quickselect reduces from quadratic to ''linear'', which is also the asymptotically optimal worst-case complexity of any selection algorithm. In other words, the median of medians is an approximate median-selection algorithm that helps building an asymptotically optimal, exact general selection algorithm (especially in the sense of worst-case complexity), by producing good pivot elements. Median of medians can also be used as a pivot strategy in quicksort, yielding an optimal algorithm, with worst-case complexity O(n\log n). Although this approach optimizes the asymptotic worst-cas ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Selection Algorithm
In computer science, a selection algorithm is an algorithm for finding the kth smallest value in a collection of ordered values, such as numbers. The value that it finds is called the order statistic. Selection includes as special cases the problems of finding the minimum, median, and maximum element in the collection. Selection algorithms include quickselect, and the median of medians algorithm. When applied to a collection of n values, these algorithms take linear time, O(n) as expressed using big O notation. For data that is already structured, faster algorithms may be possible; as an extreme case, selection in an already-sorted array takes Problem statement An algorithm for the selection problem takes as input a collection of values, and a It outputs the smallest of these values, or, in some versions of the problem, a collection of the k smallest values. For this to be well-defined, it should be possible to sort the values into an order from smallest to largest; ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Percentile
In statistics, a ''k''-th percentile, also known as percentile score or centile, is a score (e.g., a data point) a given percentage ''k'' of all scores in its frequency distribution exists ("exclusive" definition) or a score a given percentage of the all scores exists ("inclusive" definition); i.e. a score in the ''k''-th percentile would be above approximately ''k''% of all scores in its set. For example, the 97th percentile of data is a data point below which 97% of all data points exist (by the exclusive definition). Percentiles depends on how scores are arranged. Percentiles are a type of quantiles, obtained adopting a subdivision into 100 groups. The 25th percentile is also known as the first '' quartile'' (''Q''1), the 50th percentile as the ''median'' or second quartile (''Q''2), and the 75th percentile as the third quartile (''Q''3). For example, the 50th percentile (median) is the score (or , depending on the definition) which 50% of the scores in the distribution are ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Decision Tree
A decision tree is a decision support system, decision support recursive partitioning structure that uses a Tree (graph theory), tree-like Causal model, model of decisions and their possible consequences, including probability, chance event outcomes, resource costs, and utility. It is one way to display an algorithm that only contains conditional control statements. Decision trees are commonly used in operations research, specifically in decision analysis, to help identify a strategy most likely to reach a goal, but are also a popular tool in Decision tree learning, machine learning. Overview A decision tree is a flowchart-like structure in which each internal node represents a test on an attribute (e.g. whether a coin flip comes up heads or tails), each branch represents the outcome of the test, and each leaf node represents a class label (decision taken after computing all attributes). The paths from root to leaf represent classification rules. In decision analysis, a de ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Insertion Sort
Insertion sort is a simple sorting algorithm that builds the final sorted array (or list) one item at a time by comparisons. It is much less efficient on large lists than more advanced algorithms such as quicksort, heapsort, or merge sort. However, insertion sort provides several advantages: * Simple implementation: Jon Bentley shows a version that is three lines in C-like pseudo-code, and five lines when optimized. * Efficient for (quite) small data sets, much like other quadratic (i.e., O(''n''2)) sorting algorithms * More efficient in practice than most other simple quadratic algorithms such as selection sort or bubble sort * Adaptive, i.e., efficient for data sets that are already substantially sorted: the time complexity is O(''kn'') when each element in the input is no more than places away from its sorted position * Stable; i.e., does not change the relative order of elements with equal keys * In-place; i.e., only requires a constant amount O(1) of additional me ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dutch National Flag Problem
The Dutch national flag problem is a computational problem proposed by Edsger Dijkstra.In a chapter of his book ''A Discipline of Programming'' Prentice-Hall, 1976 The flag of the Netherlands consists of three colors: red, white, and blue. Given balls of these three colors arranged randomly in a line (it does not matter how many balls there are), the task is to arrange them such that all balls of the same color are together and their collective color groups are in the correct order. The solution to this problem is of interest for designing sorting algorithms; in particular, variants of the quicksort algorithm that must be robust to repeated elements may use a three-way partitioning function that groups items less than a given key (red), equal to the key (white) and greater than the key (blue). Several solutions exist that have varying performance characteristics, tailored to sorting arrays with either small or large numbers of repeated elements.The latter case occurs in string so ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mutual Recursion
In mathematics and computer science, mutual recursion is a form of recursion where two mathematical or computational objects, such as functions or datatypes, are defined in terms of each other. Mutual recursion is very common in functional programming and in some problem domains, such as recursive descent parsers, where the datatypes are naturally mutually recursive. Examples Datatypes The most important basic example of a datatype that can be defined by mutual recursion is a tree, which can be defined mutually recursively in terms of a forest (a list of trees). Symbolically: f: [1 ..., t[k t: v f A forest ''f'' consists of a list of trees, while a tree ''t'' consists of a pair of a value ''v'' and a forest ''f'' (its children). This definition is elegant and easy to work with abstractly (such as when proving theorems about properties of trees), as it expresses a tree in simple terms: a list of one type, and a pair of two types. Further, it matches many algorithms on trees, whi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Recursion (computer Science)
In computer science, recursion is a method of solving a computational problem where the solution depends on solutions to smaller instances of the same problem. Recursion solves such recursion, recursive problems by using function (computer science), functions that call themselves from within their own code. The approach can be applied to many types of problems, and recursion is one of the central ideas of computer science. Most computer programming languages support recursion by allowing a function to call itself from within its own code. Some functional programming languages (for instance, Clojure) do not define any looping constructs but rely solely on recursion to repeatedly call code. It is proved in computability theory that these recursive-only languages are Turing complete; this means that they are as powerful (they can be used to solve the same problems) as imperative languages based on control structures such as and . Repeatedly calling a function from within itse ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Zero-based Numbering
Zero-based numbering is a way of numbering in which the initial element of a sequence is assigned the index 0, rather than the index 1 as is typical in everyday non-mathematical or non-programming circumstances. Under zero-based numbering, the initial element is sometimes termed the '' zeroth'' element, rather than the ''first'' element; ''zeroth'' is a coined word for the ordinal number zero. In some cases, an object or value that does not (originally) belong to a given sequence, but which could be naturally placed before its initial element, may be termed the zeroth element. There is no wide agreement regarding the correctness of using zero as an ordinal (nor regarding the use of the term ''zeroth''), as it creates ambiguity for all subsequent elements of the sequence when lacking context. Numbering sequences starting at 0 is quite common in mathematics notation, in particular in combinatorics, though programming languages for mathematics usually index from 1. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pseudocode
In computer science, pseudocode is a description of the steps in an algorithm using a mix of conventions of programming languages (like assignment operator, conditional operator, loop) with informal, usually self-explanatory, notation of actions and conditions. Although pseudocode shares features with regular programming languages, it is intended for human reading rather than machine control. Pseudocode typically omits details that are essential for machine implementation of the algorithm, meaning that pseudocode can only be verified by hand. The programming language is augmented with natural language description details, where convenient, or with compact mathematical notation. The reasons for using pseudocode are that it is easier for people to understand than conventional programming language code and that it is an efficient and environment-independent description of the key principles of an algorithm. It is commonly used in textbooks and scientific publications to document ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Decile
In descriptive statistics, a decile is any of the nine values that divide the sorted data into ten equal parts, so that each part represents 1/10 of the sample or population. A decile is one possible form of a quantile; others include the quartile and percentile.. A decile rank arranges the data in order from lowest to highest and is done on a scale of one to ten where each successive number corresponds to an increase of 10 percentage points. Special usage: The decile mean A moderately robust measure of central tendency - known as the decile mean - can be computed by making use of a sample's deciles D_ to D_ (D_ = 10th percentile, D_ = 20th percentile and so on). It is calculated as follows: : DM = \frac Apart from serving as an alternative for the mean and the truncated mean, it also forms the basis for robust measures of skewness and kurtosis In probability theory and statistics, kurtosis (from , ''kyrtos'' or ''kurtos'', meaning "curved, arching") refers to the degree ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Triangular Number
A triangular number or triangle number counts objects arranged in an equilateral triangle. Triangular numbers are a type of figurate number, other examples being square numbers and cube numbers. The th triangular number is the number of dots in the triangular arrangement with dots on each side, and is equal to the sum of the natural numbers from 1 to . The first 100 terms sequence of triangular numbers, starting with the 0th triangular number, are Formula The triangular numbers are given by the following explicit formulas: where \textstyle is notation for a binomial coefficient. It represents the number of distinct pairs that can be selected from objects, and it is read aloud as " plus one choose two". The fact that the nth triangular number equals n(n+1)/2 can be illustrated using a visual proof. For every triangular number T_n, imagine a "half-rectangle" arrangement of objects corresponding to the triangular number, as in the figure below. Copying this arrangement ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Array Data Structure
In computer science, an array is a data structure consisting of a collection of ''elements'' (value (computer science), values or variable (programming), variables), of same memory size, each identified by at least one ''array index'' or ''key'', a collection of which may be a tuple, known as an index tuple. An array is stored such that the position (memory address) of each element can be computed from its index tuple by a mathematical formula. The simplest type of data structure is a linear array, also called a one-dimensional array. For example, an array of ten 32-bit (4-byte) integer variables, with indices 0 through 9, may be stored as ten Word (data type), words at memory addresses 2000, 2004, 2008, ..., 2036, (in hexadecimal: 0x7D0, 0x7D4, 0x7D8, ..., 0x7F4) so that the element with index ''i'' has the address 2000 + (''i'' × 4). The memory address of the first element of an array is called first address, foundation address, or base address. Because the mathematical conc ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |