Maximal Semilattice Quotient
In abstract algebra, a branch of mathematics, a maximal semilattice quotient is a commutative monoid derived from another commutative monoid by making certain elements equivalent to each other. Every commutative monoid can be endowed with its ''algebraic'' preordering ≤ . By definition, ''x≤ y'' holds, if there exists ''z'' such that ''x+z=y''. Further, for ''x, y'' in ''M'', let x\propto y hold, if there exists a positive integer ''n'' such that ''x≤ ny'', and let x\asymp y hold, if x\propto y and y\propto x. The binary relation \asymp is a monoid congruence of ''M'', and the quotient monoid M/ is the ''maximal semilattice quotient'' of ''M''. This terminology can be explained by the fact that the canonical projection ''p'' from ''M'' onto M/ is universal among all monoid homomorphisms from ''M'' to a (∨,0)-semilattice, that is, for any (∨,0)-semilattice ''S'' and any monoid homomorphism ''f: M→ S'', there exists a unique (∨,0)-homomorphism g\colon M/\to S such ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Abstract Algebra
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras over a field. The term ''abstract algebra'' was coined in the early 20th century to distinguish this area of study from older parts of algebra, and more specifically from elementary algebra, the use of variables to represent numbers in computation and reasoning. Algebraic structures, with their associated homomorphisms, form mathematical categories. Category theory is a formalism that allows a unified way for expressing properties and constructions that are similar for various structures. Universal algebra is a related subject that studies types of algebraic structures as single objects. For example, the structure of groups is a single object in universal algebra, which is called the '' variety of groups''. History Before the nineteenth century, alge ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting poin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Commutative Monoid
In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0. Monoids are semigroups with identity. Such algebraic structures occur in several branches of mathematics. The functions from a set into itself form a monoid with respect to function composition. More generally, in category theory, the morphisms of an object to itself form a monoid, and, conversely, a monoid may be viewed as a category with a single object. In computer science and computer programming, the set of strings built from a given set of characters is a free monoid. Transition monoids and syntactic monoids are used in describing finite-state machines. Trace monoids and history monoids provide a foundation for process calculi and concurrent computing. In theoretical computer science, the study of monoids is fundamental for automat ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Equivalence Relation
In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. Each equivalence relation provides a partition of the underlying set into disjoint equivalence classes. Two elements of the given set are equivalent to each other if and only if they belong to the same equivalence class. Notation Various notations are used in the literature to denote that two elements a and b of a set are equivalent with respect to an equivalence relation R; the most common are "a \sim b" and "", which are used when R is implicit, and variations of "a \sim_R b", "", or "" to specify R explicitly. Non-equivalence may be written "" or "a \not\equiv b". Definition A binary relation \,\sim\, on a set X is said to be an equivalence relation, if and only if it is reflexive, symmetric and transitive. That is, for all a, b, and c in X: * a \sim a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Preorder
In mathematics, especially in order theory, a preorder or quasiorder is a binary relation that is reflexive and transitive. Preorders are more general than equivalence relations and (non-strict) partial orders, both of which are special cases of a preorder: an antisymmetric (or skeletal) preorder is a partial order, and a symmetric preorder is an equivalence relation. The name comes from the idea that preorders (that are not partial orders) are 'almost' (partial) orders, but not quite; they are neither necessarily antisymmetric nor asymmetric. Because a preorder is a binary relation, the symbol \,\leq\, can be used as the notational device for the relation. However, because they are not necessarily antisymmetric, some of the ordinary intuition associated to the symbol \,\leq\, may not apply. On the other hand, a preorder can be used, in a straightforward fashion, to define a partial order and an equivalence relation. Doing so, however, is not always useful or worthwh ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Binary Relation
In mathematics, a binary relation associates elements of one set, called the ''domain'', with elements of another set, called the ''codomain''. A binary relation over Set (mathematics), sets and is a new set of ordered pairs consisting of elements in and in . It is a generalization of the more widely understood idea of a unary function. It encodes the common concept of relation: an element is ''related'' to an element , if and only if the pair belongs to the set of ordered pairs that defines the ''binary relation''. A binary relation is the most studied special case of an Finitary relation, -ary relation over sets , which is a subset of the Cartesian product X_1 \times \cdots \times X_n. An example of a binary relation is the "divides" relation over the set of prime numbers \mathbb and the set of integers \mathbb, in which each prime is related to each integer that is a Divisibility, multiple of , but not to an integer that is not a multiple of . In this relation, for ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Congruence Relation
In abstract algebra, a congruence relation (or simply congruence) is an equivalence relation on an algebraic structure (such as a group, ring, or vector space) that is compatible with the structure in the sense that algebraic operations done with equivalent elements will yield equivalent elements. Every congruence relation has a corresponding quotient structure, whose elements are the equivalence classes (or congruence classes) for the relation. Basic example The prototypical example of a congruence relation is congruence modulo n on the set of integers. For a given positive integer n, two integers a and b are called congruent modulo n, written : a \equiv b \pmod if a - b is divisible by n (or equivalently if a and b have the same remainder when divided by n). For example, 37 and 57 are congruent modulo 10, : 37 \equiv 57 \pmod since 37 - 57 = -20 is a multiple of 10, or equivalently since both 37 and 57 have a remainder of 7 when divided by 10. Congruence modulo n ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Semilattice
In mathematics, a join-semilattice (or upper semilattice) is a partially ordered set that has a join (a least upper bound) for any nonempty finite subset. Dually, a meet-semilattice (or lower semilattice) is a partially ordered set which has a meet (or greatest lower bound) for any nonempty finite subset. Every join-semilattice is a meet-semilattice in the inverse order and vice versa. Semilattices can also be defined algebraically: join and meet are associative, commutative, idempotent binary operations, and any such operation induces a partial order (and the respective inverse order) such that the result of the operation for any two elements is the least upper bound (or greatest lower bound) of the elements with respect to this partial order. A lattice is a partially ordered set that is both a meet- and join-semilattice with respect to the same partial order. Algebraically, a lattice is a set with two associative, commutative idempotent binary operations linked by ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Refinement Monoid
In mathematics, a refinement monoid is a commutative monoid ''M'' such that for any elements ''a0'', ''a1'', ''b0'', ''b1'' of ''M'' such that ''a0+a1=b0+b1'', there are elements ''c00'', ''c01'', ''c10'', ''c11'' of ''M'' such that ''a0=c00+c01'', ''a1=c10+c11'', ''b0=c00+c10'', and ''b1=c01+c11''. A commutative monoid ''M'' is said to be conical if ''x''+''y''=0 implies that ''x''=''y''=0, for any elements ''x'',''y'' of ''M''. Basic examples A join-semilattice with zero is a refinement monoid if and only if it is distributive. Any abelian group is a refinement monoid. The positive cone ''G+'' of a partially ordered abelian group ''G'' is a refinement monoid if and only if ''G'' is an ''interpolation group'', the latter meaning that for any elements ''a0'', ''a1'', ''b0'', ''b1'' of ''G'' such that ''ai ≤ bj'' for all ''i, j denotes the isomorphism type of ''X''), is a conical refinement monoid. Vaught measures on Boolean algebras For a Boolean algebra ''A'' and a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Distributivity (order Theory)
In the mathematical area of order theory, there are various notions of the common concept of distributivity, applied to the formation of suprema and infima. Most of these apply to partially ordered sets that are at least lattices, but the concept can in fact reasonably be generalized to semilattices as well. Distributive lattices Probably the most common type of distributivity is the one defined for lattices, where the formation of binary suprema and infima provide the total operations of join (\vee) and meet (\wedge). Distributivity of these two operations is then expressed by requiring that the identity : x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z) hold for all elements ''x'', ''y'', and ''z''. This distributivity law defines the class of distributive lattices. Note that this requirement can be rephrased by saying that binary meets preserve binary joins. The above statement is known to be equivalent to its order dual : x \vee (y \wedge z) = (x \vee y) \wedge ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |