HOME





History Of The Separation Axioms
The history of the separation axioms in general topology has been convoluted, with many meanings competing for the same terms and many terms competing for the same concept. Origins Before the current general definition of topological space, there were many definitions offered, some of which assumed (what we now think of as) some separation axioms. For example, the definition given by Felix Hausdorff in 1914 is equivalent to the modern definition plus the Hausdorff space, Hausdorff separation axiom. The separation axioms, as a group, became important in the study of metrisability: the question of which topological spaces can be given the structure (mathematics), structure of a metric space. Metric spaces satisfy all of the separation axioms; but in fact, studying spaces that satisfy only ''some'' axioms helps build up to the notion of full metrisability. The separation axioms that were first studied together in this way were the axioms for accessible spaces, Hausdorff spaces, r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Separation Axiom
In topology and related fields of mathematics, there are several restrictions that one often makes on the kinds of topological spaces that one wishes to consider. Some of these restrictions are given by the separation axioms. These are sometimes called ''Tychonoff separation axioms'', after Andrey Tychonoff. The separation axioms are not fundamental axioms like those of Zermelo–Fraenkel set theory, set theory, but rather defining properties which may be specified to distinguish certain types of topological spaces. The separation axioms are denoted with the letter "T" after the German language, German ''Trennungsaxiom'' ("separation axiom"), and increasing numerical subscripts denote stronger and stronger properties. The precise definitions of the history of the separation axioms, separation axioms have varied over time. Especially in older literature, different authors might have different definitions of each condition. Preliminary definitions Before we define the separation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Completely Regular Space
In topology and related branches of mathematics, Tychonoff spaces and completely regular spaces are kinds of topological spaces. These conditions are examples of separation axioms. A Tychonoff space is any completely regular space that is also a Hausdorff space; there exist completely regular spaces that are not Tychonoff (i.e. not Hausdorff). Paul Urysohn had used the notion of completely regular space in a 1925 paper without giving it a name. But it was Andrey Tychonoff who introduced the terminology ''completely regular'' in 1930. Definitions A topological space X is called if points can be separated from closed sets via (bounded) continuous real-valued functions. In technical terms this means: for any closed set A \subseteq X and any point x \in X \setminus A, there exists a real-valued continuous function f : X \to \R such that f(x)=1 and f\vert_ = 0. (Equivalently one can choose any two values instead of 0 and 1 and even require that f be a bounded function.) A to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dover Publications
Dover Publications, also known as Dover Books, is an American book publisher founded in 1941 by Hayward and Blanche Cirker. It primarily reissues books that are out of print from their original publishers. These are often, but not always, books in the public domain. The original published editions may be scarce or historically significant. Dover republishes these books, making them available at a significantly reduced cost. Classic reprints Dover reprints classic works of literature, classical sheet music, and public-domain images from the 18th and 19th centuries. Dover also publishes an extensive collection of mathematical, scientific, and engineering texts. It often targets its reprints at a niche market, such as woodworking. Starting in 2015, the company branched out into graphic novel reprints, overseen by Dover acquisitions editor and former comics writer and editor Drew Ford. Most Dover reprints are photo facsimiles of the originals, retaining the original pagination ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second-largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

History Of Topology
Topology (from the Greek words , and ) is the branch of mathematics concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself. A topological space is a set endowed with a structure, called a ''topology'', which allows defining continuous deformation of subspaces, and, more generally, all kinds of continuity. Euclidean spaces, and, more generally, metric spaces are examples of topological spaces, as any distance or metric defines a topology. The deformations that are considered in topology are homeomorphisms and homotopies. A property that is invariant under such deformations is a topological property. The following are basic examples of topological properties: the dimension, which allows distinguishing between a line and a surface; compactness, which allows distinguishing between a line a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Analysis (math)
Analysis is the branch of mathematics dealing with continuous functions, limits, and related theories, such as differentiation, integration, measure, infinite sequences, series, and analytic functions. These theories are usually studied in the context of real and complex numbers and functions. Analysis evolved from calculus, which involves the elementary concepts and techniques of analysis. Analysis may be distinguished from geometry; however, it can be applied to any space of mathematical objects that has a definition of nearness (a topological space) or specific distances between objects (a metric space). History Ancient Mathematical analysis formally developed in the 17th century during the Scientific Revolution, but many of its ideas can be traced back to earlier mathematicians. Early results in analysis were implicitly present in the early days of ancient Greek mathematics. For instance, an infinite geometric sum is implicit in Zeno's paradox of the dichotomy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




John L
"John L" is a song by English rock band Black Midi, released in 2021 as the lead single from their second studio album, ''Cavalcade (Black Midi album), Cavalcade''. The song describes the story of a powerful leader, the titular John L, who is eventually betrayed and killed by his followers. It was released on March 23, with the B-side Despair and a music video directed by Nina McNeely. A 12-inch release for the single was made available for pre-order on the same day and released on April 9. The song is one of few on ''Cavalcade'' to have writing credits for guitarist Matt Kwasniewski-Kelvin, written before his departure from the band but recorded after. Composition and recording "John L" is an Avant-garde music, avant-garde progressive rock song described by ''Guitar World'' as "[featuring] dissonant piano chimes, weaving hypnotic vocals, a cacophony of string sounds, and an edge-of-the-seat dynamic range, spanning from complete silence to raucous, high-energy midsections." ''Mi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lynn A
Lynn may refer to: People and fictional characters * Lynn (given name), including a list of people and fictional characters * Lynn (surname) * The Lynns, a 1990s American country music duo consisting of twin sisters Peggy and Patsy Lynn * Lynn (voice actress), Japanese voice actress Places Canada * Lynn Lake, Manitoba, a town and adjacent lake * Lynn, Nova Scotia, a community * Lynn River, Ontario Ireland * Lynn (civil parish), County Westmeath New Zealand * New Lynn, a suburb of Auckland United Kingdom * King's Lynn, a port town in Norfolk, England ** South Lynn, part of King's Lynn United States * Lynn, Alabama, a town * Lynn, Arkansas, a town * Lynn, Oakland, California, a former settlement * Lynn, Indiana, a town * Lynn, Massachusetts, a city ** Lynn (MBTA station) * Lynn, Nebraska, an unincorporated community * Lynn, Susquehanna County, Pennsylvania, an historic community now part of Springville in Susquehanna County, Pennsylvania * Lynn, Utah, an unincorporated ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Counterexamples In Topology
''Counterexamples in Topology'' (1970, 2nd ed. 1978) is a book on mathematics by topologists Lynn Steen and J. Arthur Seebach, Jr. In the process of working on problems like the metrization problem, topologists (including Steen and Seebach) have defined a wide variety of topological properties. It is often useful in the study and understanding of abstracts such as topological spaces to determine that one property does not follow from another. One of the easiest ways of doing this is to find a counterexample which exhibits one property but not the other. In ''Counterexamples in Topology'', Steen and Seebach, together with five students in an undergraduate research project at St. Olaf College, Minnesota in the summer of 1967, canvassed the field of topology for such counterexamples and compiled them in an attempt to simplify the literature. For instance, an example of a first-countable space which is not second-countable is counterexample #3, the discrete topology on an u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Entailment
Logical consequence (also entailment or logical implication) is a fundamental concept in logic which describes the relationship between statements that hold true when one statement logically ''follows from'' one or more statements. A valid logical argument is one in which the conclusion is entailed by the premises, because the conclusion is the consequence of the premises. The philosophical analysis of logical consequence involves the questions: In what sense does a conclusion follow from its premises? and What does it mean for a conclusion to be a consequence of premises?Beall, JC and Restall, Greg, Logical Consequence' The Stanford Encyclopedia of Philosophy (Fall 2009 Edition), Edward N. Zalta (ed.). All of philosophical logic is meant to provide accounts of the nature of logical consequence and the nature of logical truth. Logical consequence is necessary and formal, by way of examples that explain with formal proof and models of interpretation. A sentence is said to b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Completely Normal Space
Completely may refer to: * ''Completely'' (Diamond Rio album) * ''Completely'' (Christian Bautista album), 2005 * "Completely", a song by American singer and songwriter Michael Bolton * "Completely", a song by Serial Joe from ''(Last Chance) At the Romance Dance...'', 2001 * "Completely", a song by Shane Filan from '' Love Always'', 2017 * "Completely", a song by Blue October from '' This Is What I Live For'', 2020 See also * Completeness (other) Complete may refer to: Logic * Completeness (logic) * Completeness of a theory, the property of a theory that every formula in the theory's language or its negation is provable Mathematics * The completeness of the real numbers, which implies t ...
{{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]