HOME





Hippopede
In geometry, a hippopede () is a plane curve determined by an equation of the form :(x^2+y^2)^2=cx^2+dy^2, where it is assumed that and since the remaining cases either reduce to a single point or can be put into the given form with a rotation. Hippopedes are circular algebraic curve, bicircular, Rational number, rational, algebraic curves of Degree of a polynomial, degree 4 and symmetric with respect to both the and axes. Special cases When ''d'' > 0 the curve has an oval form and is often known as an oval of Booth, and when the curve resembles a sideways figure eight, or lemniscate, and is often known as a lemniscate of Booth, after 19th-century mathematician James Booth (mathematician), James Booth who studied them. Hippopedes were also investigated by Proclus (for whom they are sometimes called Hippopedes of Proclus) and Eudoxus of Cnidus, Eudoxus. For , the hippopede corresponds to the lemniscate of Bernoulli. Definition as spiric sections Hippopedes can be defined ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Eudoxus Of Cnidus
Eudoxus of Cnidus (; , ''Eúdoxos ho Knídios''; ) was an Ancient Greece, ancient Greek Ancient Greek astronomy, astronomer, Greek mathematics, mathematician, doctor, and lawmaker. He was a student of Archytas and Plato. All of his original works are lost, though some fragments are preserved in Hipparchus' ''Commentaries on the Phenomena of Aratus and Eudoxus''. ''Theodosius' Spherics, Spherics'' by Theodosius of Bithynia may be based on a work by Eudoxus. Life Eudoxus, son of Aeschines, was born and died in Cnidus (also transliterated Knidos), a city on the southwest coast of Anatolia. The years of Eudoxus' birth and death are not fully known but Diogenes Laertius, Diogenes Laërtius gave several biographical details, mentioned that Apollodorus of Athens, Apollodorus said he reached his wikt:acme#English, acme in the 103rd Olympiad (368–), and claimed he died in his 53rd year. From this 19th century mathematical historians reconstructed dates of 408–, but 20th century schola ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


List Of Curves
This is a list of Wikipedia articles about curves used in different fields: mathematics (including geometry, statistics, and applied mathematics), physics, engineering, economics, medicine, biology, psychology, ecology, etc. Mathematics (Geometry) Algebraic curves Rational curves Rational curves are subdivided according to the degree of the polynomial. =Degree 1= * Line =Degree 2= Plane curves of degree 2 are known as conics or conic sections and include *Circle **Unit circle *Ellipse *Parabola *Hyperbola **Unit hyperbola =Degree 3= Cubic plane curves include * Cubic parabola * Folium of Descartes *Cissoid of Diocles * Conchoid of de Sluze * Right strophoid * Semicubical parabola * Serpentine curve * Trident curve * Trisectrix of Maclaurin *Tschirnhausen cubic *Witch of Agnesi =Degree 4= Quartic plane curves include * Ampersand curve *Bean curve *Bicorn * Bow curve * Bullet-nose curve * Cartesian oval * Conchoid of Dürer * Cruciform curve *Deltoid curve * Devil's curve *H ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lemniscate
In algebraic geometry, a lemniscate ( or ) is any of several figure-eight or -shaped curves. The word comes from the Latin , meaning "decorated with ribbons", from the Greek (), meaning "ribbon",. or which alternatively may refer to the wool from which the ribbons were made. Curves that have been called a lemniscate include three quartic plane curves: the hippopede or lemniscate of Booth, the lemniscate of Bernoulli, and the lemniscate of Gerono. The hippopede was studied by Proclus (5th century), but the term "lemniscate" was not used until the work of Jacob Bernoulli in the late 17th century. History and examples Lemniscate of Booth The consideration of curves with a figure-eight shape can be traced back to Proclus, a Greek Neoplatonist philosopher and mathematician who lived in the 5th century AD. Proclus considered the cross-sections of a torus by a plane parallel to the axis of the torus. As he observed, for most such sections the cross section consists of either on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lemniscate Of Bernoulli
In geometry, the lemniscate of Bernoulli is a plane curve defined from two given points and , known as foci, at distance from each other as the locus of points so that . The curve has a shape similar to the numeral 8 and to the ∞ symbol. Its name is from , which is Latin for "decorated with hanging ribbons". It is a special case of the Cassini oval and is a rational algebraic curve of degree 4. This lemniscate was first described in 1694 by Jakob Bernoulli as a modification of an ellipse, which is the locus of points for which the sum of the distances to each of two fixed ''focal points'' is a constant. A Cassini oval, by contrast, is the locus of points for which the ''product'' of these distances is constant. In the case where the curve passes through the point midway between the foci, the oval is a lemniscate of Bernoulli. This curve can be obtained as the inverse transform of a hyperbola, with the inversion circle centered at the center of the hyperbola (bisect ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cartesian Coordinate
In geometry, a Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of real numbers called ''coordinates'', which are the signed distances to the point from two fixed perpendicular oriented lines, called '' coordinate lines'', ''coordinate axes'' or just ''axes'' (plural of ''axis'') of the system. The point where the axes meet is called the '' origin'' and has as coordinates. The axes directions represent an orthogonal basis. The combination of origin and basis forms a coordinate frame called the Cartesian frame. Similarly, the position of any point in three-dimensional space can be specified by three ''Cartesian coordinates'', which are the signed distances from the point to three mutually perpendicular planes. More generally, Cartesian coordinates specify the point in an -dimensional Euclidean space for any dimension . These coordinates are the signed distances from the point to mutually perpendicular fixed h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polar Coordinate
In mathematics, the polar coordinate system specifies a given point in a plane by using a distance and an angle as its two coordinates. These are *the point's distance from a reference point called the ''pole'', and *the point's direction from the pole relative to the direction of the ''polar axis'', a ray drawn from the pole. The distance from the pole is called the ''radial coordinate'', ''radial distance'' or simply ''radius'', and the angle is called the ''angular coordinate'', ''polar angle'', or ''azimuth''. The pole is analogous to the origin in a Cartesian coordinate system. Polar coordinates are most appropriate in any context where the phenomenon being considered is inherently tied to direction and length from a center point in a plane, such as spirals. Planar physical systems with bodies moving around a central point, or phenomena originating from a central point, are often simpler and more intuitive to model using polar coordinates. The polar coordinate system is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Toric Section
A toric section is an intersection of a plane with a torus, just as a conic section is the intersection of a plane with a cone. Special cases have been known since antiquity, and the general case was studied by Jean Gaston Darboux.. Mathematical formulae In general, toric sections are fourth-order ( quartic) plane curves of the form : \left( x^2 + y^2 \right)^2 + a x^2 + b y^2 + cx + dy + e = 0. Spiric sections A special case of a toric section is the spiric section, in which the intersecting plane is parallel to the rotational symmetry axis of the torus. They were discovered by the ancient Greek geometer Perseus in roughly 150 BC. Well-known examples include the hippopede and the Cassini oval and their relatives, such as the lemniscate of Bernoulli. Villarceau circles Another special case is the Villarceau circles, in which the intersection is a circle despite the lack of any of the obvious sorts of symmetry that would entail a circular cross-section.. General toric ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spiric Section
In geometry, a spiric section, sometimes called a spiric of Perseus, is a quartic plane curve defined by equations of the form :(x^2+y^2)^2=dx^2+ey^2+f. \, Equivalently, spiric sections can be defined as bicircular quartic curves that are symmetric with respect to the ''x'' and ''y''-axes. Spiric sections are included in the family of toric sections and include the family of hippopedes and the family of Cassini ovals. The name is from σπειρα meaning torus in ancient Greek. A spiric section is sometimes defined as the curve of intersection of a torus and a plane parallel to its rotational symmetry axis. However, this definition does not include all of the curves given by the previous definition unless imaginary planes are allowed. Spiric sections were first described by the ancient Greek geometer Perseus in roughly 150 BC, and are assumed to be the first toric sections to be described. The name ''spiric'' is due to the ancient notation ''spira'' of a torus., Wilbur ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Torus
In geometry, a torus (: tori or toruses) is a surface of revolution generated by revolving a circle in three-dimensional space one full revolution about an axis that is coplanarity, coplanar with the circle. The main types of toruses include ring toruses, horn toruses, and spindle toruses. A ring torus is sometimes colloquially referred to as a donut or doughnut. If the axis of revolution does not touch the circle, the surface has a ring shape and is called a torus of revolution, also known as a ring torus. If the axis of revolution is tangent to the circle, the surface is a horn torus. If the axis of revolution passes twice through the circle, the surface is a Lemon (geometry), spindle torus (or ''self-crossing torus'' or ''self-intersecting torus''). If the axis of revolution passes through the center of the circle, the surface is a degenerate torus, a double-covered sphere. If the revolved curve is not a circle, the surface is called a ''toroid'', as in a square toroid. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]