HOME





Hexomino
A hexomino (or 6-omino) is a polyomino of order 6; that is, a polygon in the plane made of 6 equal-sized squares connected edge to edge. The name of this type of figure is formed with the prefix hex(a)-. When rotations and reflections are not considered to be distinct shapes, there are 35 different ''free'' hexominoes. When reflections are considered distinct, there are 60 ''one-sided'' hexominoes. When rotations are also considered distinct, there are 216 ''fixed'' hexominoes. Symmetry The figure above shows all 35 possible free hexominoes, coloured according to their symmetry groups: * The twenty grey hexominoes have no symmetry. Their symmetry group consists only of the identity mapping. * The six red hexominoes have an axis of mirror symmetry parallel to the gridlines. Their symmetry group has two elements, the identity and a reflection in a line parallel to the sides of the squares. * The two green hexominoes have an axis of mirror symmetry at 45° to the gridlines. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pentomino
A pentomino (or 5-omino) is a polyomino of order 5; that is, a polygon in the Plane (geometry), plane made of 5 equal-sized squares connected edge to edge. The term is derived from the Greek word for '5' and "domino". When rotation symmetry, rotations and reflection symmetry, reflections are not considered to be distinct shapes, there are 12 different ''Free polyomino, free'' pentominoes. When reflections are considered distinct, there are 18 ''One-sided polyomino, one-sided'' pentominoes. When rotations are also considered distinct, there are 63 ''Fixed polyomino, fixed'' pentominoes. Pentomino tiling puzzles and games are popular in recreational mathematics. Usually, video games such as ''Tetris'' imitations and Rampart (game), ''Rampart'' consider mirror reflections to be distinct, and thus use the full set of 18 one-sided pentominoes. (Tetris itself uses 4-square shapes.) Each of the twelve pentominoes satisfies the Conway criterion; hence, every pentomino is capable of tilin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


All 35 Free Hexominoes
All or ALL may refer to: عرص Biology and medicine * Acute lymphoblastic leukemia, a cancer * Anterolateral ligament, a ligament in the knee * ''All.'', taxonomic author abbreviation for Carlo Allioni (1728–1804), Italian physician and professor of botany Language * All, an indefinite pronoun in English * All, one of the English determiners * Allar language of Kerala, India (ISO 639-3 code) * Allative case (abbreviated ALL) Music * All (band), an American punk rock band ** ''All'' (All album), 1999 * ''All'' (Descendents album) or the title song, 1987 * ''All'' (Horace Silver album) or the title song, 1972 * ''All'' (Yann Tiersen album), 2019 * "All" (song), by Patricia Bredin, representing the UK at Eurovision 1957 * "All (I Ever Want)", a song by Alexander Klaws, 2005 * "All", a song by Collective Soul from ''Hints Allegations and Things Left Unsaid'', 1994 Sports * All (tennis) * American Lacrosse League (1988) * Arena Lacrosse League, Canada * Australian Lacrosse L ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Reflection Symmetry
In mathematics, reflection symmetry, line symmetry, mirror symmetry, or mirror-image symmetry is symmetry with respect to a Reflection (mathematics), reflection. That is, a figure which does not change upon undergoing a reflection has reflectional symmetry. In Two-dimensional space, two-dimensional space, there is a line/axis of symmetry, in Three-dimensional space, three-dimensional space, there is a plane (mathematics), plane of symmetry. An object or figure which is indistinguishable from its transformed image is called mirror image, mirror symmetric. Symmetric function In formal terms, a mathematical object is symmetric with respect to a given mathematical operation, operation such as reflection, Rotational symmetry, rotation, or Translational symmetry, translation, if, when applied to the object, this operation preserves some property of the object. The set of operations that preserve a given property of the object form a group (algebra), group. Two objects are symmetr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cube
A cube or regular hexahedron is a three-dimensional space, three-dimensional solid object in geometry, which is bounded by six congruent square (geometry), square faces, a type of polyhedron. It has twelve congruent edges and eight vertices. It is a type of parallelepiped, with pairs of parallel opposite faces, and more specifically a rhombohedron, with congruent edges, and a rectangular cuboid, with right angles between pairs of intersecting faces and pairs of intersecting edges. It is an example of many classes of polyhedra: Platonic solid, regular polyhedron, parallelohedron, zonohedron, and plesiohedron. The dual polyhedron of a cube is the regular octahedron. The cube can be represented in many ways, one of which is the graph known as the cubical graph. It can be constructed by using the Cartesian product of graphs. The cube is the three-dimensional hypercube, a family of polytopes also including the two-dimensional square and four-dimensional tesseract. A cube with 1, unit s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Net (polyhedron)
In geometry, a net of a polyhedron is an arrangement of non-overlapping Edge (geometry), edge-joined polygons in the plane (geometry), plane which can be folded (along edges) to become the face (geometry), faces of the polyhedron. Polyhedral nets are a useful aid to the study of polyhedra and solid geometry in general, as they allow for physical models of polyhedra to be constructed from material such as thin cardboard. An early instance of polyhedral nets appears in the works of Albrecht Dürer, whose 1525 book ''A Course in the Art of Measurement with Compass and Ruler'' (''Unterweysung der Messung mit dem Zyrkel und Rychtscheyd '') included nets for the Platonic solids and several of the Archimedean solids. These constructions were first called nets in 1543 by Augustin Hirschvogel. Existence and uniqueness Many different nets can exist for a given polyhedron, depending on the choices of which edges are joined and which are separated. The edges that are cut from a convex poly ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

The 11 Cubic Nets
''The'' is a grammatical article in English, denoting nouns that are already or about to be mentioned, under discussion, implied or otherwise presumed familiar to listeners, readers, or speakers. It is the definite article in English. ''The'' is the most frequently used word in the English language; studies and analyses of texts have found it to account for seven percent of all printed English-language words. It is derived from gendered articles in Old English which combined in Middle English and now has a single form used with nouns of any gender. The word can be used with both singular and plural nouns, and with a noun that starts with any letter. This is different from many other languages, which have different forms of the definite article for different genders or numbers. Pronunciation In most dialects, "the" is pronounced as (with the voiced dental fricative followed by a schwa) when followed by a consonant sound, and as (homophone of the archaic pronoun ''thee'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Odd Number
In mathematics, parity is the property of an integer of whether it is even or odd. An integer is even if it is divisible by 2, and odd if it is not.. For example, −4, 0, and 82 are even numbers, while −3, 5, 23, and 69 are odd numbers. The above definition of parity applies only to integer numbers, hence it cannot be applied to numbers with decimals or fractions like 1/2 or 4.6978. See the section "Higher mathematics" below for some extensions of the notion of parity to a larger class of "numbers" or in other more general settings. Even and odd numbers have opposite parities, e.g., 22 (even number) and 13 (odd number) have opposite parities. In particular, the parity of zero is even. Any two consecutive integers have opposite parity. A number (i.e., integer) expressed in the decimal numeral system is even or odd according to whether its last digit is even or odd. That is, if the last digit is 1, 3, 5, 7, or 9, then it is odd; otherwise it is even—as the last digit of any ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Checkerboard
A checkerboard (American English) or chequerboard (British English) is a game board of check (pattern), checkered pattern on which checkers (also known as English draughts) is played. Most commonly, it consists of 64 squares (8×8) of alternating dark and light color, typically green and Buff (colour), buff (official tournaments), black and red (consumer commercial), or black and white (printed diagrams). An 8×8 checkerboard is used to play many other games, including chess, whereby it is known as a chessboard. Other rectangular square-tiled boards are also often called checkerboards. In The Netherlands, however, a ''dambord'' (checker board) has 10 rows and 10 columns for 100 squares in total (see article International draughts). Games and puzzles using checkerboards Martin Gardner featured puzzles based on checkerboards in his November 1962 Mathematical Games column in Scientific American. A square checkerboard with an alternating pattern is used for games including: * Amazons ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Parity (mathematics)
In mathematics, parity is the Property (mathematics), property of an integer of whether it is even or odd. An integer is even if it is divisible by 2, and odd if it is not.. For example, −4, 0, and 82 are even numbers, while −3, 5, 23, and 69 are odd numbers. The above definition of parity applies only to integer numbers, hence it cannot be applied to numbers with decimals or fractions like 1/2 or 4.6978. See the section "Higher mathematics" below for some extensions of the notion of parity to a larger class of "numbers" or in other more general settings. Even and odd numbers have opposite parities, e.g., 22 (even number) and 13 (odd number) have opposite parities. In particular, the parity of zero is even. Any two consecutive integers have opposite parity. A number (i.e., integer) expressed in the decimal numeral system is even or odd according to whether its last digit is even or odd. That is, if the last digit is 1, 3, 5, 7, or 9, then it is odd; otherwise it is even—as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rectangle
In Euclidean geometry, Euclidean plane geometry, a rectangle is a Rectilinear polygon, rectilinear convex polygon or a quadrilateral with four right angles. It can also be defined as: an equiangular quadrilateral, since equiangular means that all of its angles are equal (360°/4 = 90°); or a parallelogram containing a right angle. A rectangle with four sides of equal length is a ''square''. The term "wikt:oblong, oblong" is used to refer to a non-square rectangle. A rectangle with Vertex (geometry), vertices ''ABCD'' would be denoted as . The word rectangle comes from the Latin ''rectangulus'', which is a combination of ''rectus'' (as an adjective, right, proper) and ''angulus'' (angle). A #Crossed rectangles, crossed rectangle is a crossed (self-intersecting) quadrilateral which consists of two opposite sides of a rectangle along with the two diagonals (therefore only two sides are parallel). It is a special case of an antiparallelogram, and its angles are not right angles an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Conway Criterion
In the mathematical theory of tessellations, the Conway criterion, named for the English mathematician John Horton Conway, is a Necessity and sufficiency, sufficient rule for when a prototile will tile the plane. It consists of the following requirements:Will It Tile? Try the Conway Criterion!' by Doris Schattschneider Mathematics Magazine Vol. 53, No. 4 (Sep, 1980), pp. 224-233 The tile must be a Topological disc#Topological balls, closed topological disk with six consecutive points A, B, C, D, E, and F on the boundary such that: * the boundary part from A to B is Congruence (geometry), congruent to the boundary part from E to D by a Translation (geometry), translation T where T(A) = E and T(B) = D. * each of the boundary parts BC, CD, EF, and FA is Centrosymmetry, centrosymmetric—that is, each one is congruent to itself when rotated by 180-degrees around its midpoint. * some of the six points may coincide but at least three of them must be distinct. Any prototile satisfying ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Klein Four-group
In mathematics, the Klein four-group is an abelian group with four elements, in which each element is Involution (mathematics), self-inverse (composing it with itself produces the identity) and in which composing any two of the three non-identity elements produces the third one. It can be described as the symmetry group of a non-square rectangle (with the three non-identity elements being horizontal reflection, vertical reflection and 180-degree rotation), as the group of bitwise operation, bitwise exclusive or, exclusive-or operations on two-bit binary values, or more abstract algebra, abstractly as \mathbb_2\times\mathbb_2, the Direct product of groups, direct product of two copies of the cyclic group of Order (group theory), order 2 by the Fundamental theorem of finitely generated abelian groups, Fundamental Theorem of Finitely Generated Abelian Groups. It was named ''Vierergruppe'' (, meaning four-group) by Felix Klein in 1884. It is also called the Klein group, and is often ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]