HOME





Group Ring
In algebra, a group ring is a free module and at the same time a ring, constructed in a natural way from any given ring and any given group. As a free module, its ring of scalars is the given ring, and its basis is the set of elements of the given group. As a ring, its addition law is that of the free module and its multiplication extends "by linearity" the given group law on the basis. Less formally, a group ring is a generalization of a given group, by attaching to each element of the group a "weighting factor" from a given ring. If the ring is commutative then the group ring is also referred to as a group algebra, for it is indeed an algebra over the given ring. A group algebra over a field has a further structure of a Hopf algebra; in this case, it is thus called a group Hopf algebra. The apparatus of group rings is especially useful in the theory of group representations. Definition Let G be a group, written multiplicatively, and let R be a ring. The group ring of G ove ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebra
Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic operations other than the standard arithmetic operations, such as addition and multiplication. Elementary algebra is the main form of algebra taught in schools. It examines mathematical statements using variables for unspecified values and seeks to determine for which values the statements are true. To do so, it uses different methods of transforming equations to isolate variables. Linear algebra is a closely related field that investigates linear equations and combinations of them called '' systems of linear equations''. It provides methods to find the values that solve all equations in the system at the same time, and to study the set of these solutions. Abstract algebra studies algebraic structures, which consist of a set of mathemati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Real Vector Space
Real may refer to: Currencies * Argentine real * Brazilian real (R$) * Central American Republic real * Mexican real * Portuguese real * Spanish real * Spanish colonial real Nature and science * Reality, the state of things as they exist, rather than as they may appear or may be thought to be * Real numbers, the set of rational and irrational numbers (and opposed to imaginary numbers) * The Real, an aspect of human psychic structure Sports Africa * Real Republicans FC (Accra), Ghana * Real Republicans F.C. (Sierra Leone) Central and South America * Club Real Potosí, Bolivia * Municipal Real Mamoré, Bolivia * Associação Esportiva Real, Brazil * Real Noroeste Capixaba Futebol Clube, Brazil * C.D. Real Sociedad, Honduras * Real C.D. España, Honduras *Real Maya, Honduras * Real Club España, Mexico * Real Saltillo Soccer, Mexico * Real Sociedad de Zacatecas, Mexico *Real Estelí Baloncesto, Nicaragua * Real Estelí F.C., Nicaragua *Real Madriz, Nicaragua *Real Garcilaso, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Convolution
In mathematics (in particular, functional analysis), convolution is a operation (mathematics), mathematical operation on two function (mathematics), functions f and g that produces a third function f*g, as the integral of the product of the two functions after one is reflected about the y-axis and shifted. The term ''convolution'' refers to both the resulting function and to the process of computing it. The integral is evaluated for all values of shift, producing the convolution function. The choice of which function is reflected and shifted before the integral does not change the integral result (see #Properties, commutativity). Graphically, it expresses how the 'shape' of one function is modified by the other. Some features of convolution are similar to cross-correlation: for real-valued functions, of a continuous or discrete variable, convolution f*g differs from cross-correlation f \star g only in that either f(x) or g(x) is reflected about the y-axis in convolution; thus i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Basis Vector
In mathematics, a set of elements of a vector space is called a basis (: bases) if every element of can be written in a unique way as a finite linear combination of elements of . The coefficients of this linear combination are referred to as components or coordinates of the vector with respect to . The elements of a basis are called . Equivalently, a set is a basis if its elements are linearly independent and every element of is a linear combination of elements of . In other words, a basis is a linearly independent spanning set. A vector space can have several bases; however all the bases have the same number of elements, called the dimension of the vector space. This article deals mainly with finite-dimensional vector spaces. However, many of the principles are also valid for infinite-dimensional vector spaces. Basis vectors find applications in the study of crystal structures and frames of reference. Definition A basis of a vector space over a field (such as th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebra Over A Field
In mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear map, bilinear product (mathematics), product. Thus, an algebra is an algebraic structure consisting of a set (mathematics), set together with operations of multiplication and addition and scalar multiplication by elements of a field (mathematics), field and satisfying the axioms implied by "vector space" and "bilinear". The multiplication operation in an algebra may or may not be associative, leading to the notions of associative algebras where associativity of multiplication is assumed, and non-associative algebras, where associativity is not assumed (but not excluded, either). Given an integer ''n'', the ring (mathematics), ring of real matrix, real square matrix, square matrices of order ''n'' is an example of an associative algebra over the field of real numbers under matrix addition and matrix multiplication since matrix multiplication is associative. Three-dime ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Free Vector Space
In mathematics, a free module is a module that has a ''basis'', that is, a generating set that is linearly independent. Every vector space is a free module, but, if the ring of the coefficients is not a division ring (not a field in the commutative case), then there exist non-free modules. Given any set and ring , there is a free -module with basis , which is called the ''free module on'' or ''module of formal'' -''linear combinations'' of the elements of . A free abelian group is precisely a free module over the ring \Z of integers. Definition For a ring R and an R- module M, the set E\subseteq M is a basis for M if: * E is a generating set for M; that is to say, every element of M is a finite sum of elements of E multiplied by coefficients in R; and * E is linearly independent: for every set \\subset E of distinct elements, r_1 e_1 + r_2 e_2 + \cdots + r_n e_n = 0_M implies that r_1 = r_2 = \cdots = r_n = 0_R (where 0_M is the zero element of M and 0_R is the zero eleme ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finite Group
In abstract algebra, a finite group is a group whose underlying set is finite. Finite groups often arise when considering symmetry of mathematical or physical objects, when those objects admit just a finite number of structure-preserving transformations. Important examples of finite groups include cyclic groups and permutation groups. The study of finite groups has been an integral part of group theory since it arose in the 19th century. One major area of study has been classification: the classification of finite simple groups (those with no nontrivial normal subgroup) was completed in 2004. History During the twentieth century, mathematicians investigated some aspects of the theory of finite groups in great depth, especially the local theory of finite groups and the theory of solvable and nilpotent groups. As a consequence, the complete classification of finite simple groups was achieved, meaning that all those simple groups from which all finite groups can be bu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Contrapositive
In logic and mathematics, contraposition, or ''transposition'', refers to the inference of going from a Conditional sentence, conditional statement into its logically equivalent contrapositive, and an associated proof method known as . The contrapositive of a statement has its Antecedent (logic), antecedent and consequent Negation, negated and Conversion (logic), swapped. Material conditional, Conditional statement P \rightarrow Q. In Logical connective, formulas: the contrapositive of P \rightarrow Q is \neg Q \rightarrow \neg P . If ''P'', Then ''Q''. — If not ''Q'', Then not ''P''. "If ''it is raining,'' then ''I wear my coat''." — "If ''I don't wear my coat,'' then ''it isn't raining''." The law of contraposition says that a conditional statement is true if, and only if, its contrapositive is true. Contraposition ( \neg Q \rightarrow \neg P ) can be compared with three other operations: ;Inverse (logic), Inversion (the inverse), \neg P \rightarrow \neg Q:"If ''it is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Prime Ring
In abstract algebra, a nonzero ring ''R'' is a prime ring if for any two elements ''a'' and ''b'' of ''R'', ''arb'' = 0 for all ''r'' in ''R'' implies that either ''a'' = 0 or ''b'' = 0. This definition can be regarded as a simultaneous generalization of both integral domains and simple rings. Although this article discusses the above definition, prime ring may also refer to the minimal non-zero subring of a field, which is generated by its identity element 1, and determined by its characteristic. For a characteristic 0 field, the prime ring is the integers, and for a characteristic ''p'' field (with ''p'' a prime number) the prime ring is the finite field of order ''p'' (cf. Prime field).Page 90 of Equivalent definitions A ring ''R'' is prime if and only if the zero ideal is a prime ideal in the noncommutative sense. This being the case, the equivalent conditions for prime ideals yield the following equivalent conditions for ''R'' to be a prime ring: *For any two ideals ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Zero Divisors
In abstract algebra, an element of a ring is called a left zero divisor if there exists a nonzero in such that , or equivalently if the map from to that sends to is not injective. Similarly, an element of a ring is called a right zero divisor if there exists a nonzero in such that . This is a partial case of divisibility in rings. An element that is a left or a right zero divisor is simply called a zero divisor. An element  that is both a left and a right zero divisor is called a two-sided zero divisor (the nonzero such that may be different from the nonzero such that ). If the ring is commutative, then the left and right zero divisors are the same. An element of a ring that is not a left zero divisor (respectively, not a right zero divisor) is called left regular or left cancellable (respectively, right regular or right cancellable). An element of a ring that is left and right cancellable, and is hence not a zero divisor, is called regular or cancellable, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Subring
In mathematics, a subring of a ring is a subset of that is itself a ring when binary operations of addition and multiplication on ''R'' are restricted to the subset, and that shares the same multiplicative identity as .In general, not all subsets of a ring are rings. Definition A subring of a ring is a subset of that preserves the structure of the ring, i.e. a ring with . Equivalently, it is both a subgroup of and a submonoid of . Equivalently, is a subring if and only if it contains the multiplicative identity of , and is closed under multiplication and subtraction. This is sometimes known as the ''subring test''. Variations Some mathematicians define rings without requiring the existence of a multiplicative identity (see '). In this case, a subring of is a subset of that is a ring for the operations of (this does imply it contains the additive identity of ). This alternate definition gives a strictly weaker condition, even for rings that do have a mult ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Subgroup
In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G. Formally, given a group (mathematics), group under a binary operation ∗, a subset of is called a subgroup of if also forms a group under the operation ∗. More precisely, is a subgroup of if the Restriction (mathematics), restriction of ∗ to is a group operation on . This is often denoted , read as " is a subgroup of ". The trivial subgroup of any group is the subgroup consisting of just the identity element. A proper subgroup of a group is a subgroup which is a subset, proper subset of (that is, ). This is often represented notationally by , read as " is a proper subgroup of ". Some authors also exclude the trivial group from being proper (that is, ). If is a subgroup of , then is sometimes called an overgroup of . The same definitions apply more generally when is an arbitrary se ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]