Group-stack
In algebraic geometry, a group-stack is an algebraic stack whose categories of points have group structures or even groupoid structures in a compatible way. It generalizes a group scheme, which is a scheme whose sets of points have group structures in a compatible way. Examples *A group scheme is a group-stack. More generally, a group algebraic-space, an algebraic-space analog of a group scheme, is a group-stack. *Over a field ''k'', a vector bundle stack \mathcal on a Deligne–Mumford stack ''X'' is a group-stack such that there is a vector bundle ''V'' over ''k'' on ''X'' and a presentation V \to \mathcal. It has an action by the affine line \mathbb^1 corresponding to scalar multiplication. *A Picard stack is an example of a group-stack (or groupoid-stack). Actions of group-stacks The definition of a group action of a group-stack is a bit tricky. First, given an algebraic stack ''X'' and a group scheme ''G'' on a base scheme ''S'', a right action of ''G'' on ''X'' consis ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Group Scheme
In mathematics, a group scheme is a type of object from algebraic geometry equipped with a composition law. Group schemes arise naturally as symmetries of schemes, and they generalize algebraic groups, in the sense that all algebraic groups have group scheme structure, but group schemes are not necessarily connected, smooth, or defined over a field. This extra generality allows one to study richer infinitesimal structures, and this can help one to understand and answer questions of arithmetic significance. The category of group schemes is somewhat better behaved than that of group varieties, since all homomorphisms have kernels, and there is a well-behaved deformation theory. Group schemes that are not algebraic groups play a significant role in arithmetic geometry and algebraic topology, since they come up in contexts of Galois representations and moduli problems. The initial development of the theory of group schemes was due to Alexander Grothendieck, Michel Rayn ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Stack
In mathematics, an algebraic stack is a vast generalization of algebraic spaces, or schemes, which are foundational for studying moduli theory. Many moduli spaces are constructed using techniques specific to algebraic stacks, such as Artin's representability theorem, which is used to construct the moduli space of pointed algebraic curves \mathcal_ and the moduli stack of elliptic curves. Originally, they were introduced by Alexander Grothendieck to keep track of automorphisms on moduli spaces, a technique which allows for treating these moduli spaces as if their underlying schemes or algebraic spaces are smooth. After Grothendieck developed the general theory of descent, and Giraud the general theory of stacks, the notion of algebraic stacks was defined by Michael Artin. Definition Motivation One of the motivating examples of an algebraic stack is to consider a groupoid scheme (R,U,s,t,m) over a fixed scheme S. For example, if R = \mu_n\times_S\mathbb^n_S (where \mu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Groupoid
In mathematics, especially in category theory and homotopy theory, a groupoid (less often Brandt groupoid or virtual group) generalises the notion of group in several equivalent ways. A groupoid can be seen as a: * '' Group'' with a partial function replacing the binary operation; * '' Category'' in which every morphism is invertible. A category of this sort can be viewed as augmented with a unary operation on the morphisms, called ''inverse'' by analogy with group theory. A groupoid where there is only one object is a usual group. In the presence of dependent typing, a category in general can be viewed as a typed monoid, and similarly, a groupoid can be viewed as simply a typed group. The morphisms take one from one object to another, and form a dependent family of types, thus morphisms might be typed , , say. Composition is then a total function: , so that . Special cases include: * '' Setoids'': sets that come with an equivalence relation, * '' G-sets'': sets equippe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Picard Stack
In mathematics, an Abelian 2-group is a higher dimensional analogue of an Abelian group, in the sense of higher algebra, which were originally introduced by Alexander Grothendieck while studying abstract structures surrounding Abelian varieties and Picard groups. More concretely, they are given by groupoids \mathbb which have a bifunctor +:\mathbb\times\mathbb \to \mathbb which acts formally like the addition an Abelian group. Namely, the bifunctor + has a notion of commutativity, associativity, and an identity structure. Although this seems like a rather lofty and abstract structure, there are several (very concrete) examples of Abelian 2-groups. In fact, some of which provide prototypes for more complex examples of higher algebraic structures, such as Abelian ''n''-groups. Definition An Abelian 2-group is a groupoid \mathbb (that is, a category in which every morphism is an isomorphism) with a bifunctor +: \mathbb\times\mathbb \to \mathbb and natural transformations ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Group Action (mathematics)
In mathematics, a group action of a group G on a set (mathematics), set S is a group homomorphism from G to some group (under function composition) of functions from S to itself. It is said that G acts on S. Many sets of transformation (function), transformations form a group (mathematics), group under function composition; for example, the rotation (mathematics), rotations around a point in the plane. It is often useful to consider the group as an abstract group, and to say that one has a group action of the abstract group that consists of performing the transformations of the group of transformations. The reason for distinguishing the group from the transformations is that, generally, a group of transformations of a mathematical structure, structure acts also on various related structures; for example, the above rotation group also acts on triangles by transforming triangles into triangles. If a group acts on a structure, it will usually also act on objects built from that st ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Morphism Of Algebraic Stacks
In algebraic geometry, given algebraic stacks p: X \to C, \, q: Y \to C over a base category ''C'', a morphism f: X \to Y of algebraic stacks is a functor such that q \circ f = p. More generally, one can also consider a morphism between prestacks (a stackification would be an example). Types One particular important example is a presentation of a stack, which is widely used in the study of stacks. An algebraic stack ''X'' is said to be smooth of dimension ''n'' - ''j'' if there is a smooth presentation U \to X of relative dimension ''j'' for some smooth scheme ''U'' of dimension ''n''. For example, if \operatorname_n denotes the moduli stack of rank-''n'' vector bundles, then there is a presentation \operatorname(k) \to \operatorname_n given by the trivial bundle \mathbb^n_k over \operatorname(k). A quasi-affine morphism between algebraic stacks is a morphism that factorizes as a quasi-compact open immersion followed by an affine morphism In algebraic geometry, a sheaf ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |