Greedy Embedding
In distributed computing and geometric graph theory, greedy embedding is a process of assigning coordinates to the nodes of a telecommunications network in order to allow greedy geographic routing to be used to route messages within the network. Although greedy embedding has been proposed for use in wireless sensor networks, in which the nodes already have positions in physical space, these existing positions may differ from the positions given to them by greedy embedding, which may in some cases be points in a virtual space of a higher dimension, or in a non-Euclidean geometry. In this sense, greedy embedding may be viewed as a form of graph drawing, in which an abstract graph (the communications network) is embedded into a geometric space. The idea of performing geographic routing using coordinates in a virtual space, instead of using physical coordinates, is due to Rao et al. Subsequent developments have shown that every network has a greedy embedding with succinct vertex coordi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Distributed Computing
Distributed computing is a field of computer science that studies distributed systems, defined as computer systems whose inter-communicating components are located on different networked computers. The components of a distributed system communicate and coordinate their actions by passing messages to one another in order to achieve a common goal. Three significant challenges of distributed systems are: maintaining concurrency of components, overcoming the lack of a global clock, and managing the independent failure of components. When a component of one system fails, the entire system does not fail. Examples of distributed systems vary from SOA-based systems to microservices to massively multiplayer online games to peer-to-peer applications. Distributed systems cost significantly more than monolithic architectures, primarily due to increased needs for additional hardware, servers, gateways, firewalls, new subnets, proxies, and so on. Also, distributed systems are prone to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kissing Number Problem
In geometry, the kissing number of a mathematical space is defined as the greatest number of non-overlapping unit spheres that can be arranged in that space such that they each touch a common unit sphere. For a given sphere packing (arrangement of spheres) in a given space, a kissing number can also be defined for each individual sphere as the number of spheres it touches. For a Lattice (group), lattice packing the kissing number is the same for every sphere, but for an arbitrary sphere packing the kissing number may vary from one sphere to another. Other names for kissing number that have been used are Newton number (after the originator of the problem), and contact number. In general, the kissing number problem seeks the maximum possible kissing number for n-sphere, ''n''-dimensional spheres in (''n'' + 1)-dimensional Euclidean space. Ordinary spheres correspond to two-dimensional closed surfaces in three-dimensional space. Finding the kissing number when centers of spheres a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fáry's Theorem
In the mathematical field of graph theory, Fáry's theorem states that any simple graph, simple, planar graph can be Graph drawing, drawn without crossings so that its edges are straight line segments. That is, the ability to draw graph edges as curves instead of as straight line segments does not allow a larger class of graphs to be drawn. The theorem is named after István Fáry, although it was proved independently by , , and . Proof One way of proving Fáry's theorem is to use mathematical induction. Let be a simple planar graph, plane graph with vertices; we may add edges if necessary so that is a maximally plane graph. If < 3, the result is trivial. If ≥ 3, then all faces of must be triangles, as we could add an edge into any face with more sides while preserving planarity, contradicting the assumption of maximal planarity. Choose some three vertices forming a triangular face of . We prove by induction on that there exists a straight-line combinatorially iso ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Knaster–Kuratowski–Mazurkiewicz Lemma
The Knaster–Kuratowski–Mazurkiewicz lemma is a basic result in mathematical fixed-point theory published in 1929 by Knaster, Kuratowski and Mazurkiewicz. The KKM lemma can be proved from Sperner's lemma and can be used to prove the Brouwer fixed-point theorem. Statement Let \Delta_ be an (n-1)-dimensional simplex with ''n'' vertices labeled as 1,\ldots,n. A KKM covering is defined as a set C_1,\ldots,C_n of closed sets such that for any I \subseteq \, the convex hull of the vertices corresponding to I is covered by \bigcup_C_i. The KKM lemma says that in every KKM covering, the common intersection of all ''n'' sets is nonempty, i.e.: :\bigcap_^n C_i \neq \emptyset. Example When n=3, the KKM lemma considers the simplex \Delta_2 which is a triangle, whose vertices can be labeled 1, 2 and 3. We are given three closed sets C_1,C_2,C_3 such that: * C_1 covers vertex 1, C_2 covers vertex 2, C_3 covers vertex 3. * The edge 12 (from vertex 1 to vertex 2) is covered by the set ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Maximal Planar Graph
In graph theory, a planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cross each other. Such a drawing is called a plane graph, or a planar embedding of the graph. A plane graph can be defined as a planar graph with a mapping from every node to a point on a plane, and from every edge to a plane curve on that plane, such that the extreme points of each curve are the points mapped from its end nodes, and all curves are disjoint except on their extreme points. Every graph that can be drawn on a plane can be drawn on the sphere as well, and vice versa, by means of stereographic projection. Plane graphs can be encoded by combinatorial maps or rotation systems. An equivalence class of topologically equivalent drawings on the sphere, usually with additional assumptions such as the absence of isthmuses, is called ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cactus Graph
In graph theory, a cactus (sometimes called a cactus tree) is a connected graph in which any two simple cycles have at most one vertex in common. Equivalently, it is a connected graph in which every edge belongs to at most one simple cycle, or (for nontrivial cacti) in which every block (maximal subgraph without a cut-vertex) is an edge or a cycle. Properties Cacti are outerplanar graphs. Every pseudotree is a cactus. A nontrivial graph is a cactus if and only if every block is either a simple cycle or a single edge. The family of graphs in which each component is a cactus is downwardly closed under graph minor operations. This graph family may be characterized by a single forbidden minor, the four-vertex diamond graph formed by removing an edge from the complete graph ''K''4. Triangular cactus A triangular cactus is a special type of cactus graph such that each cycle has length three and each edge belongs to a cycle. For instance, the friendship graphs, graphs formed f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Convex Polyhedron
In geometry, a polyhedron (: polyhedra or polyhedrons; ) is a three-dimensional figure with flat polygonal faces, straight edges and sharp corners or vertices. The term "polyhedron" may refer either to a solid figure or to its boundary surface. The terms solid polyhedron and polyhedral surface are commonly used to distinguish the two concepts. Also, the term ''polyhedron'' is often used to refer implicitly to the whole structure formed by a solid polyhedron, its polyhedral surface, its faces, its edges, and its vertices. There are many definitions of polyhedron. Nevertheless, the polyhedron is typically understood as a generalization of a two-dimensional polygon and a three-dimensional specialization of a polytope, a more general concept in any number of dimensions. Polyhedra have several general characteristics that include the number of faces, topological classification by Euler characteristic, duality, vertex figures, surface area, volume, interior lines, Dehn invar ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Steinitz's Theorem
In polyhedral combinatorics, a branch of mathematics, Steinitz's theorem is a characterization of the undirected graphs formed by the edges and vertices of three-dimensional convex polyhedron, convex polyhedra: they are exactly the vertex connectivity, 3-vertex-connected planar graphs. That is, every convex polyhedron forms a 3-connected planar graph, and every 3-connected planar graph can be represented as the graph of a convex polyhedron. For this reason, the 3-connected planar graphs are also known as polyhedral graphs. This result provides a classification theorem for the three-dimensional convex polyhedra, something that is not known in higher dimensions. It provides a complete and purely combinatorial description of the graphs of these polyhedra, allowing other results on them, such as Eberhard's theorem on the realization of polyhedra with given types of faces, to be proven more easily, without reference to the geometry of these shapes. Additionally, it has been applied in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Planar Graph
In graph theory, a planar graph is a graph (discrete mathematics), graph that can be graph embedding, embedded in the plane (geometry), plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cross each other. Such a drawing is called a plane graph, or a planar embedding of the graph. A plane graph can be defined as a planar graph with a mapping from every node to a point on a plane, and from every edge to a plane curve on that plane, such that the extreme points of each curve are the points mapped from its end nodes, and all curves are disjoint except on their extreme points. Every graph that can be drawn on a plane can be drawn on the sphere as well, and vice versa, by means of stereographic projection. Plane graphs can be encoded by combinatorial maps or rotation systems. An equivalence class of topologically equivalent drawings on the sphere, usually with addit ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
K-vertex-connected Graph
In graph theory, a connected Graph (discrete mathematics), graph is said to be -vertex-connected (or -connected) if it has more than Vertex (graph theory), vertices and remains Connectivity (graph theory), connected whenever fewer than vertices are removed. The vertex-connectivity, or just connectivity, of a graph is the largest for which the graph is -vertex-connected. Definitions A graph (other than a complete graph) has connectivity ''k'' if ''k'' is the size of the smallest subset of vertices such that the graph becomes disconnected if you delete them. In complete graphs, there is no subset whose removal would disconnect the graph. Some sources modify the definition of connectivity to handle this case, by defining it as the size of the smallest subset of vertices whose deletion results in either a disconnected graph or a single vertex. For this variation, the connectivity of a complete graph K_n is n-1. An equivalent definition is that a graph with at least two vertic ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Conjecture
In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. Some conjectures, such as the Riemann hypothesis or Fermat's conjecture (now a theorem, proven in 1995 by Andrew Wiles), have shaped much of mathematical history as new areas of mathematics are developed in order to prove them. Resolution of conjectures Proof Formal mathematics is based on ''provable'' truth. In mathematics, any number of cases supporting a universally quantified conjecture, no matter how large, is insufficient for establishing the conjecture's veracity, since a single counterexample could immediately bring down the conjecture. Mathematical journals sometimes publish the minor results of research teams having extended the search for a counterexample farther than previously done. For instance, the Collatz conjecture, which concerns whether or not certain sequences of integers terminate, has been tested for all integers up to 1.2 × 101 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Linear Time
In theoretical computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to perform. Thus, the amount of time taken and the number of elementary operations performed by the algorithm are taken to be related by a constant factor. Since an algorithm's running time may vary among different inputs of the same size, one commonly considers the worst-case time complexity, which is the maximum amount of time required for inputs of a given size. Less common, and usually specified explicitly, is the average-case complexity, which is the average of the time taken on inputs of a given size (this makes sense because there are only a finite number of possible inputs of a given size). In both cases, the time complexity is gene ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |