HOME





Graph Operations
In the mathematical field of graph theory, graph operations are operations which produce new graphs from initial ones. They include both unary (one input) and binary (two input) operations. Unary operations Unary operations create a new graph from a single initial graph. Elementary operations Elementary operations or editing operations, which are also known as graph edit operations, create a new graph from one initial one by a simple local change, such as addition or deletion of a vertex or of an edge, merging and splitting of vertices, edge contraction, etc. The graph edit distance between a pair of graphs is the minimum number of elementary operations required to transform one graph into the other. Advanced operations Advanced operations create a new graph from an initial one by a complex change, such as: * transpose graph; * complement graph; * line graph; * graph minor; * graph rewriting; * power of graph; * dual graph; * medial graph; * quotient graph; * Y- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Annals Of Mathematics
The ''Annals of Mathematics'' is a mathematical journal published every two months by Princeton University and the Institute for Advanced Study. History The journal was established as ''The Analyst'' in 1874 and with Joel E. Hendricks as the founding editor-in-chief. It was "intended to afford a medium for the presentation and analysis of any and all questions of interest or importance in pure and applied Mathematics, embracing especially all new and interesting discoveries in theoretical and practical astronomy, mechanical philosophy, and engineering". It was published in Des Moines, Iowa, and was the earliest American mathematics journal to be published continuously for more than a year or two. This incarnation of the journal ceased publication after its tenth year, in 1883, giving as an explanation Hendricks' declining health, but Hendricks made arrangements to have it taken over by new management, and it was continued from March 1884 as the ''Annals of Mathematics''. T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Zig-zag Product Of Graphs
In graph theory, the zig-zag product of regular graphs G,H, denoted by G \circ H, is a binary operation which takes a large graph (G) and a small graph (H) and produces a graph that approximately inherits the size of the large one but the degree of the small one. An important property of the zig-zag product is that if H is a good expander, then the expansion of the resulting graph is only slightly worse than the expansion of G. Roughly speaking, the zig-zag product G \circ H replaces each vertex of G with a copy (cloud) of H, and connects the vertices by moving a small step (zig) inside a cloud, followed by a big step (zag) between two clouds, and finally performs another small step inside the destination cloud. More specifically, the start and endpoints for each edge are at the beginning and end of this "zig-zag-zig" process starting at the points in the replacement product of the two graphs. The zigzag product was introduced by . When the zig-zag product was first introduce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Replacement Product
In graph theory, the replacement product of two Graph (discrete mathematics), graphs is a graph product that can be used to reduce the degree (graph theory), degree of a graph while maintaining its connectivity (graph theory), connectivity. Suppose is a -regular graph and is an -regular graph with vertex set Let denote the replacement product of and . The vertex set of is the Cartesian product . For each vertex in and for each edge in , the vertex is adjacent to in . Furthermore, for each edge in , if is the th neighbor of and is the th neighbor of , the vertex is adjacent to in . If is an -regular graph, then is an -regular graph. References External links

* Graph products {{Graph-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tensor Product Of Graphs
In graph theory, the tensor product of graphs and is a graph such that * the vertex set of is the Cartesian product ; and * vertices and are adjacent in if and only if ** is adjacent to in , and ** is adjacent to in . The tensor product is also called the direct product, Kronecker product, categorical product, cardinal product, relational product, weak direct product, or conjunction. As an operation on binary relations, the tensor product was introduced by Alfred North Whitehead and Bertrand Russell in their Principia Mathematica (1912). It is also equivalent to the Kronecker product of the adjacency matrices of the graphs. The notation is also (and formerly normally was) used to represent another construction known as the Cartesian product of graphs, but nowadays more commonly refers to the tensor product. The cross symbol shows visually the two edges resulting from the tensor product of two edges. This product should not be confused with the strong product of g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Strong Product Of Graphs
In graph theory, the strong product is a way of combining two graphs to make a larger graph. Two vertices are adjacent in the strong product when they come from pairs of vertices in the factor graphs that are either adjacent or identical. The strong product is one of several different graph product operations that have been studied in graph theory. The strong product of any two graphs can be constructed as the union of two other products of the same two graphs, the Cartesian product of graphs and the tensor product of graphs. An example of a strong product is the king's graph, the graph of moves of a chess king on a chessboard, which can be constructed as a strong product of path graphs. Decompositions of planar graphs and related graph classes into strong products have been used as a central tool to prove many other results about these graphs. Care should be exercised when encountering the term ''strong product'' in the literature, since it has also been used to denote the te ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Lexicographic Product Of Graphs
In graph theory, the lexicographic product or (graph) composition of graphs and is a graph such that * the vertex set of is the cartesian product ; and * any two vertices and are adjacent in if and only if either is adjacent to in or and is adjacent to in . If the edge relations of the two graphs are order relations, then the edge relation of their lexicographic product is the corresponding lexicographic order. The lexicographic product was first studied by . As showed, the problem of recognizing whether a graph is a lexicographic product is equivalent in complexity to the graph isomorphism problem. Properties The lexicographic product is in general noncommutative: . However it satisfies a distributive law with respect to disjoint union: . In addition it satisfies an identity with respect to complementation: . In particular, the lexicographic product of two self-complementary graph In the mathematical field of graph theory, a self-complementary graph is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Frank Harary
Frank Harary (March 11, 1921 – January 4, 2005) was an American mathematician, who specialized in graph theory. He was widely recognized as one of the "fathers" of modern graph theory. Harary was a master of clear exposition and, together with his many doctoral students, he standardized the terminology of graphs. He broadened the reach of this field to include physics, psychology, sociology, and even anthropology. Gifted with a keen sense of humor, Harary challenged and entertained audiences at all levels of mathematical sophistication. A particular trick he employed was to turn theorems into games—for instance, students would try to add red edges to a graph on six vertices in order to create a red triangle, while another group of students tried to add edges to create a blue triangle (and each edge of the graph had to be either blue or red). Because of the theorem on friends and strangers, one team or the other would have to win. Biography Frank Harary was born in New Yo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cartesian Product Of Graphs
In graph theory, the Cartesian product of graphs and is a graph such that: * the vertex set of is the Cartesian product ; and * two vertices and are adjacent in if and only if either ** and is adjacent to in , or ** and is adjacent to in . The Cartesian product of graphs is sometimes called the box product of graphs arary 1969 The operation is associative, as the graphs and are naturally isomorphic. The operation is commutative as an operation on isomorphism classes of graphs, and more strongly the graphs and are naturally isomorphic, but it is not commutative as an operation on labeled graphs. The notation has often been used for Cartesian products of graphs, but is now more commonly used for another construction known as the tensor product of graphs. The square symbol is intended to be an intuitive and unambiguous notation for the Cartesian product, since it shows visually the four edges resulting from the Cartesian product of two edges. Examples * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cartesian Product
In mathematics, specifically set theory, the Cartesian product of two sets and , denoted , is the set of all ordered pairs where is an element of and is an element of . In terms of set-builder notation, that is A\times B = \. A table can be created by taking the Cartesian product of a set of rows and a set of columns. If the Cartesian product is taken, the cells of the table contain ordered pairs of the form . One can similarly define the Cartesian product of sets, also known as an -fold Cartesian product, which can be represented by an -dimensional array, where each element is an -tuple. An ordered pair is a 2-tuple or couple. More generally still, one can define the Cartesian product of an indexed family of sets. The Cartesian product is named after René Descartes, whose formulation of analytic geometry gave rise to the concept, which is further generalized in terms of direct product. Set-theoretic definition A rigorous definition of the Cartesian product re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Graph Products
In graph theory, a graph product is a binary operation on graphs. Specifically, it is an operation that takes two graphs and and produces a graph with the following properties: * The vertex set of is the Cartesian product , where and are the vertex sets of and , respectively. * Two vertices and of are connected by an edge, iff a condition about in and in is fulfilled. The graph products differ in what exactly this condition is. It is always about whether or not the vertices in are equal or connected by an edge. The terminology and notation for specific graph products in the literature varies quite a lot; even if the following may be considered somewhat standard, readers are advised to check what definition a particular author uses for a graph product, especially in older texts. Even for more standard definitions, it is not always consistent in the literature how to handle self-loops. The formulas below for the number of edges in a product also may fail when inc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]