Graded Derivation
In mathematics – particularly in homological algebra, algebraic topology, and algebraic geometry – a differential graded algebra (or DGA, or DG algebra) is an algebraic structure often used to capture information about a topological or geometric space. Explicitly, a differential graded algebra is a graded associative algebra with a chain complex structure that is compatible with the algebra structure. In geometry, the de Rham algebra of differential forms on a manifold has the structure of a differential graded algebra, and it encodes the de Rham cohomology of the manifold. In algebraic topology, the singular cochains of a topological space form a DGA encoding the singular cohomology. Moreover, American mathematician Dennis Sullivan developed a DGA to encode the rational homotopy type of topological spaces. __TOC__ Definitions Let A_\bullet = \bigoplus\nolimits_ A_i be a \mathbb-graded algebra, with product \cdot, equipped with a map d\colon A_\bullet \to A_\bulle ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dennis Sullivan
Dennis Parnell Sullivan (born February 12, 1941) is an American mathematician known for his work in algebraic topology, geometric topology, and dynamical systems. He holds the Albert Einstein Chair at the Graduate Center of the City University of New York and is a distinguished professor at Stony Brook University. Sullivan was awarded the Wolf Prize in Mathematics in 2010 and the Abel Prize in 2022. Early life and education Sullivan was born in Port Huron, Michigan, on February 12, 1941.. His family moved to Houston soon afterwards. He entered Rice University to study chemical engineering but switched his major to mathematics in his second year after encountering a particularly motivating mathematical theorem. The change was prompted by a special case of the uniformization theorem, according to which, in his own words: He received his Bachelor of Arts degree from Rice University in 1963. He obtained his Doctor of Philosophy from Princeton University in 1966 with hi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Symmetric Monoidal Category
In category theory, a branch of mathematics, a symmetric monoidal category is a monoidal category (i.e. a category in which a "tensor product" \otimes is defined) such that the tensor product is symmetric (i.e. A\otimes B is, in a certain strict sense, naturally isomorphic to B\otimes A for all objects A and B of the category). One of the prototypical examples of a symmetric monoidal category is the category of vector spaces over some fixed field ''k,'' using the ordinary tensor product of vector spaces. Definition A symmetric monoidal category is a monoidal category (''C'', ⊗, ''I'') such that, for every pair ''A'', ''B'' of objects in ''C'', there is an isomorphism s_: A \otimes B \to B \otimes A called the ''swap map'' that is natural in both ''A'' and ''B'' and such that the following diagrams commute: *The unit coherence: *: *The associativity coherence: *: *The inverse law: *: In the diagrams above, ''a'', ''l'', and ''r'' are the associativity isomorphism, the left unit i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tensor Product
In mathematics, the tensor product V \otimes W of two vector spaces V and W (over the same field) is a vector space to which is associated a bilinear map V\times W \rightarrow V\otimes W that maps a pair (v,w),\ v\in V, w\in W to an element of V \otimes W denoted . An element of the form v \otimes w is called the tensor product of v and w. An element of V \otimes W is a tensor, and the tensor product of two vectors is sometimes called an ''elementary tensor'' or a ''decomposable tensor''. The elementary tensors span V \otimes W in the sense that every element of V \otimes W is a sum of elementary tensors. If bases are given for V and W, a basis of V \otimes W is formed by all tensor products of a basis element of V and a basis element of W. The tensor product of two vector spaces captures the properties of all bilinear maps in the sense that a bilinear map from V\times W into another vector space Z factors uniquely through a linear map V\otimes W\to Z (see the section below ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ring (mathematics)
In mathematics, a ring is an algebraic structure consisting of a set with two binary operations called ''addition'' and ''multiplication'', which obey the same basic laws as addition and multiplication of integers, except that multiplication in a ring does not need to be commutative. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series. A ''ring'' may be defined as a set that is endowed with two binary operations called ''addition'' and ''multiplication'' such that the ring is an abelian group with respect to the addition operator, and the multiplication operator is associative, is distributive over the addition operation, and has a multiplicative identity element. (Some authors apply the term ''ring'' to a further generalization, often called a '' rng'', that omits the requirement for a multiplicative identity, and instead call the structure defi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Category Theory
Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory is used in most areas of mathematics. In particular, many constructions of new mathematical objects from previous ones that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient space (other), quotient spaces, direct products, completion, and duality (mathematics), duality. Many areas of computer science also rely on category theory, such as functional programming and Semantics (computer science), semantics. A category (mathematics), category is formed by two sorts of mathematical object, objects: the object (category theory), objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. Metapho ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebra Over A Field
In mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear map, bilinear product (mathematics), product. Thus, an algebra is an algebraic structure consisting of a set (mathematics), set together with operations of multiplication and addition and scalar multiplication by elements of a field (mathematics), field and satisfying the axioms implied by "vector space" and "bilinear". The multiplication operation in an algebra may or may not be associative, leading to the notions of associative algebras where associativity of multiplication is assumed, and non-associative algebras, where associativity is not assumed (but not excluded, either). Given an integer ''n'', the ring (mathematics), ring of real matrix, real square matrix, square matrices of order ''n'' is an example of an associative algebra over the field of real numbers under matrix addition and matrix multiplication since matrix multiplication is associative. Three-dime ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Category (mathematics)
In mathematics, a category (sometimes called an abstract category to distinguish it from a concrete category) is a collection of "objects" that are linked by "arrows". A category has two basic properties: the ability to compose the arrows associatively and the existence of an identity arrow for each object. A simple example is the category of sets, whose objects are sets and whose arrows are functions. ''Category theory'' is a branch of mathematics that seeks to generalize all of mathematics in terms of categories, independent of what their objects and arrows represent. Virtually every branch of modern mathematics can be described in terms of categories, and doing so often reveals deep insights and similarities between seemingly different areas of mathematics. As such, category theory provides an alternative foundation for mathematics to set theory and other proposed axiomatic foundations. In general, the objects and arrows may be abstract entities of any kind, and the n ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Chain Complex
In mathematics, a chain complex is an algebraic structure that consists of a sequence of abelian groups (or modules) and a sequence of homomorphisms between consecutive groups such that the image of each homomorphism is contained in the kernel of the next. Associated to a chain complex is its homology, which is (loosely speaking) a measure of the failure of a chain complex to be exact. A cochain complex is similar to a chain complex, except that its homomorphisms are in the opposite direction. The homology of a cochain complex is called its cohomology. In algebraic topology, the singular chain complex of a topological space X is constructed using continuous maps from a simplex to X, and the homomorphisms of the chain complex capture how these maps restrict to the boundary of the simplex. The homology of this chain complex is called the singular homology of X, and is a commonly used invariant of a topological space. Chain complexes are studied in homological algebra, but a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Graded Vector Space
In mathematics, a graded vector space is a vector space that has the extra structure of a ''grading'' or ''gradation'', which is a decomposition of the vector space into a direct sum of vector subspaces, generally indexed by the integers. For "pure" vector spaces, the concept has been introduced in homological algebra, and it is widely used for graded algebras, which are graded vector spaces with additional structures. Integer gradation Let \mathbb be the set of non-negative integers. An \mathbb-graded vector space, often called simply a graded vector space without the prefix \mathbb, is a vector space together with a decomposition into a direct sum of the form : V = \bigoplus_ V_n where each V_n is a vector space. For a given ''n'' the elements of V_n are then called homogeneous elements of degree ''n''. Graded vector spaces are common. For example the set of all polynomials in one or several variables forms a graded vector space, where the homogeneous elements of d ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Linear Map
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that preserves the operations of vector addition and scalar multiplication. The same names and the same definition are also used for the more general case of modules over a ring; see Module homomorphism. If a linear map is a bijection then it is called a . In the case where V = W, a linear map is called a linear endomorphism. Sometimes the term refers to this case, but the term "linear operator" can have different meanings for different conventions: for example, it can be used to emphasize that V and W are real vector spaces (not necessarily with V = W), or it can be used to emphasize that V is a function space, which is a common convention in functional analysis. Sometimes the term ''linear function'' has the same meaning as ''linear m ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Product Rule
In calculus, the product rule (or Leibniz rule or Leibniz product rule) is a formula used to find the derivatives of products of two or more functions. For two functions, it may be stated in Lagrange's notation as (u \cdot v)' = u ' \cdot v + u \cdot v' or in Leibniz's notation as \frac (u\cdot v) = \frac \cdot v + u \cdot \frac. The rule may be extended or generalized to products of three or more functions, to a rule for higher-order derivatives of a product, and to other contexts. Discovery Discovery of this rule is credited to Gottfried Leibniz, who demonstrated it using "infinitesimals" (a precursor to the modern differential). (However, J. M. Child, a translator of Leibniz's papers, argues that it is due to Isaac Barrow.) Here is Leibniz's argument: Let ''u'' and ''v'' be functions. Then ''d(uv)'' is the same thing as the difference between two successive ''uvs; let one of these be ''uv'', and the other ''u+du'' times ''v+dv''; then: \begin d(u\cdot v) & = (u + d ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |