Geometrized Units
A geometrized unit system or geometrodynamic unit system is a system of natural units in which the base physical units are chosen so that the speed of light in vacuum, ''c'', and the gravitational constant, ''G'', are set equal to unity. : c = 1 \ : G = 1 \ The geometrized unit system is not a completely defined system. Some systems are geometrized unit systems in the sense that they set these, in addition to other constants, to unity, for example Stoney units and Planck units. This system is useful in physics, especially in the special and general theories of relativity. All physical quantities are identified with geometric quantities such as areas, lengths, dimensionless numbers, path curvatures, or sectional curvatures. Many equations in relativistic physics appear simpler when expressed in geometric units, because all occurrences of ''G'' and of ''c'' drop out. For example, the Schwarzschild radius of a nonrotating uncharged black hole with mass ''m'' becomes . For this ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Natural Units
In physics, natural unit systems are measurement systems for which selected physical constants have been set to 1 through nondimensionalization of physical units. For example, the speed of light may be set to 1, and it may then be omitted, equating mass and energy directly rather than using as a conversion factor in the typical mass–energy equivalence equation . A purely natural system of units has all of its dimensions collapsed, such that the physical constants completely define the system of units and the relevant physical laws contain no conversion constants. While natural unit systems simplify the form of each equation, it is still necessary to keep track of the non-collapsed dimensions of each quantity or expression in order to reinsert physical constants (such dimensions uniquely determine the full formula). Systems of natural units Summary table where: * is the fine-structure constant ( ≈ 0.007297) * ≈ * ≈ * A dash (—) indicates where the system ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Einstein–Hilbert Action
The Einstein–Hilbert action in general relativity is the action that yields the Einstein field equations through the stationary-action principle. With the metric signature, the gravitational part of the action is given as :S = \int R \sqrt \, \mathrm^4x, where g=\det(g_) is the determinant of the metric tensor matrix, R is the Ricci scalar, and \kappa = 8\pi Gc^ is the Einstein gravitational constant (G is the gravitational constant and c is the speed of light in vacuum). If it converges, the integral is taken over the whole spacetime. If it does not converge, S is no longer well-defined, but a modified definition where one integrates over arbitrarily large, relatively compact domains, still yields the Einstein equation as the Euler–Lagrange equation of the Einstein–Hilbert action. The action was proposed by David Hilbert in 1915 as part of his application of the variational principle to a combination of gravity and electromagnetism. Discussion Deriving equations ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Energy
Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and light. Energy is a Conservation law, conserved quantity—the law of conservation of energy states that energy can be Energy transformation, converted in form, but not created or destroyed. The unit of measurement for energy in the International System of Units (SI) is the joule (J). Forms of energy include the kinetic energy of a moving object, the potential energy stored by an object (for instance due to its position in a Classical field theory, field), the elastic energy stored in a solid object, chemical energy associated with chemical reactions, the radiant energy carried by electromagnetic radiation, the internal energy contained within a thermodynamic system, and rest energy associated with an object's rest mass. These are not mutual ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Special Relativity
In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between Spacetime, space and time. In Albert Einstein's 1905 paper, Annus Mirabilis papers#Special relativity, "On the Electrodynamics of Moving Bodies", the theory is presented as being based on just Postulates of special relativity, two postulates: # The laws of physics are Invariant (physics), invariant (identical) in all Inertial frame of reference, inertial frames of reference (that is, Frame of reference, frames of reference with no acceleration). This is known as the principle of relativity. # The speed of light in vacuum is the same for all observers, regardless of the motion of light source or observer. This is known as the principle of light constancy, or the principle of light speed invariance. The first postulate was first formulated by Galileo Galilei (see ''Galilean invariance''). Background Special relativity builds upon important physics ide ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kinematics
In physics, kinematics studies the geometrical aspects of motion of physical objects independent of forces that set them in motion. Constrained motion such as linked machine parts are also described as kinematics. Kinematics is concerned with systems of specification of objects' positions and velocities and mathematical transformations between such systems. These systems may be rectangular like Cartesian coordinate system, cartesian, Curvilinear coordinates like polar coordinates or other systems. The object trajectories may be specified with respect to other objects which may themselve be in motion relative to a standard reference. Rotating systems may also be used. Numerous practical problems in kinematics involve constraints, such as mechanical linkages, ropes, or rolling disks. Overview Kinematics is a subfield of physics and mathematics, developed in classical mechanics, that describes the motion of points, Physical object, bodies (objects), and systems of bodies (group ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Length
Length is a measure of distance. In the International System of Quantities, length is a quantity with Dimension (physical quantity), dimension distance. In most systems of measurement a Base unit (measurement), base unit for length is chosen, from which all other units are derived. In the International System of Units (SI) system, the base unit for length is the metre. Length is commonly understood to mean the most extended size, dimension of a fixed object. However, this is not always the case and may depend on the position the object is in. Various terms for the length of a fixed object are used, and these include height, which is vertical length or vertical extent, width, breadth, and depth. ''Height'' is used when there is a base from which vertical measurements can be taken. ''Width'' and ''breadth'' usually refer to a shorter dimension than ''length''. ''Depth'' is used for the measure of a third dimension. Length is the measure of one spatial dimension, whereas area ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Light-second
The light-second is a unit of length useful in astronomy, telecommunications Telecommunication, often used in its plural form or abbreviated as telecom, is the transmission of information over a distance using electronic means, typically through cables, radio waves, or other communication technologies. These means of ... and Theory of relativity, relativistic physics. It is defined as the distance that light travels in free space in one second, and is equal to exactly (approximately or ). Just as the second forms the basis for other units of time, the light-second can form the basis for other units of length, ranging from the light-nanosecond ( or just under one international foot) to the light-minute, light-hour and light-day, which are sometimes used in popular science publications. The more commonly used light-year is also currently defined to be equal to precisely , since the definition of a year is based on a Julian year (astronomy), Julian year (not the Gregorian c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Second
The second (symbol: s) is a unit of time derived from the division of the day first into 24 hours, then to 60 minutes, and finally to 60 seconds each (24 × 60 × 60 = 86400). The current and formal definition in the International System of Units (SI) is more precise: The second ..is defined by taking the fixed numerical value of the caesium frequency, Δ''ν''Cs, the unperturbed ground-state hyperfine transition frequency of the caesium 133 atom, to be when expressed in the unit Hz, which is equal to s−1. This current definition was adopted in 1967 when it became feasible to define the second based on fundamental properties of nature with caesium clocks. As the speed of Earth's rotation varies and is slowing ever so slightly, a leap second is added at irregular intervals to civil time to keep clocks in sync with Earth's rotation. The definition that is based on of a rotation of the earth is still used by the Universal Time 1 (UT1) system. Etymology "Minute" ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Boltzmann Constant
The Boltzmann constant ( or ) is the proportionality factor that relates the average relative thermal energy of particles in a ideal gas, gas with the thermodynamic temperature of the gas. It occurs in the definitions of the kelvin (K) and the molar gas constant, in Planck's law of black-body radiation and Boltzmann's entropy formula, and is used in calculating Johnson–Nyquist noise, thermal noise in resistors. The Boltzmann constant has Dimensional analysis, dimensions of energy divided by temperature, the same as entropy and heat capacity. It is named after the Austrian scientist Ludwig Boltzmann. As part of the 2019 revision of the SI, the Boltzmann constant is one of the seven "Physical constant, defining constants" that have been defined so as to have exact finite decimal values in SI units. They are used in various combinations to define the seven SI base units. The Boltzmann constant is defined to be exactly joules per kelvin, with the effect of defining the SI unit ke ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
John Archibald Wheeler
John Archibald Wheeler (July 9, 1911April 13, 2008) was an American theoretical physicist. He was largely responsible for reviving interest in general relativity in the United States after World War II. Wheeler also worked with Niels Bohr to explain the basic principles of nuclear fission. Together with Gregory Breit, Wheeler developed the concept of the Breit–Wheeler process. He is best known for popularizing the term "black hole" for objects with gravitational collapse already predicted during the early 20th century, for inventing the terms "quantum foam", "neutron moderator", "wormhole" and "it from bit", and for hypothesizing the "one-electron universe". Stephen Hawking called Wheeler the "hero of the black hole story". At 21, Wheeler earned his doctorate at Johns Hopkins University under the supervision of Karl Herzfeld. He studied under Breit and Bohr on a National Research Council (United States), National Research Council fellowship. In 1939 he collaborated with Bohr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kip S
Kip, KIP or kips may refer to: Athletics * Kip (artistic gymnastics), a basic skill on the women's uneven bars * Kip (trampolining), a coaching skill used in trampolining * Kip-up, an acrobatic manoeuvre used in martial arts and gymnastics People * Kip (given name), including a list of people and fictional characters with the name * Kip (nickname), including a list of people with the nickname * Kip (surname), including a list of people with the name * Billy Gunn (born 1963), ring name Kip, American wrestler Places * Kip, Croatia * Kip, Southern Highlands Province, Papua New Guinea * Kip Peak, Queen Alexandra Range, Antarctica * Kip Water, Inverclyde, Scotland Other uses * Kip (unit), a U.S. customary unit of force * Kham language, ISO 639 code kip * CIP/KIP, a family of mammalian cyclin dependent kinase inhibitors * Lao kip, the currency of Laos * Katathym-imaginative psychotherapy, or guided imagery, a mind-body intervention * Kinetic impact projectile, or bat ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Charles W
The F/V ''Charles W'', also known as Annie J Larsen, is a historic fishing schooner anchored in Petersburg, Alaska. At the time of its retirement in 2000, it was the oldest fishing vessel in the fishing fleet of Southeast Alaska, and the only known wooden fishing vessel in the entire state still in active service. Launched in 1907, she was first used in the halibut fisheries of Puget Sound and the Bering Sea as the ''Annie J Larsen''. In 1925 she was purchased by the Alaska Glacier Seafood Company, refitted for shrimp trawling, and renamed ''Charles W'' in honor of owner Karl Sifferman's father. The company was one of the pioneers of the local shrimp fishery, a business it began to phase out due to increasing competition in the 1970s. The ''Charles W'' was the last of the company's fleet of ships, which numbered twelve at its height. The boat was acquired in 2002 by the nonprofit Friends of the ''Charles W''. The boat was listed on the National Register of Historic Place ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |