HOME





Geometrically Unibranch
In algebraic geometry, a local ring ''A'' is said to be unibranch if the reduced ring ''A''red (obtained by quotienting ''A'' by its nilradical of a ring, nilradical) is an integral domain, and the integral closure ''B'' of ''A''red is also a local ring. A unibranch local ring is said to be geometrically unibranch if the residue field of ''B'' is a purely inseparable extension of the residue field of ''A''red. A complex algebraic variety, variety ''X'' is called topologically unibranch at a point ''x'' if for all complements ''Y'' of closed algebraic subsets of ''X'' there is a fundamental system of neighborhoods (in the classical topology) of ''x'' whose intersection with ''Y'' is connected. In particular, a normal ring is unibranch. One result on unibranch points in algebraic geometry is the following: Theorem Let ''X'' and ''Y'' be two integral locally noetherian schemes and f \colon X \to Y a proper morphism, proper dominant morphism. Denote their Function field (scheme theory) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; the modern approach generalizes this in a few different aspects. The fundamental objects of study in algebraic geometry are algebraic variety, algebraic varieties, which are geometric manifestations of solution set, solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are line (geometry), lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscate of Bernoulli, lemniscates and Cassini ovals. These are plane algebraic curves. A point of the plane lies on an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of points of special interest like singular point of a curve, singular p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Proper Morphism
In algebraic geometry, a proper morphism between schemes is an analog of a proper map between complex analytic spaces. Some authors call a proper variety over a field k a complete variety. For example, every projective variety over a field k is proper over k. A scheme X of finite type over the complex numbers (for example, a variety) is proper over C if and only if the space X(C) of complex points with the classical (Euclidean) topology is compact and Hausdorff. A closed immersion is proper. A morphism is finite if and only if it is proper and quasi-finite. Definition A morphism f:X\to Y of schemes is called universally closed if for every scheme Z with a morphism Z\to Y, the projection from the fiber product :X \times_Y Z \to Z is a closed map of the underlying topological space In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a nu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Zariski's Main Theorem
In algebraic geometry, Zariski's main theorem, proved by , is a statement about the structure of birational morphisms stating roughly that there is only one branch at any normal point of a variety. It is the special case of Zariski's connectedness theorem when the two varieties are birational. Zariski's main theorem can be stated in several ways which at first sight seem to be quite different, but are in fact deeply related. Some of the variations that have been called Zariski's main theorem are as follows: *A birational morphism with finite fibers to a normal variety is an isomorphism to an open subset. *The total transform of a normal fundamental point of a birational map has positive dimension. This is essentially Zariski's original version. *The total transform of a normal point under a proper birational morphism is connected. *A generalization due to Grothendieck describes the structure of quasi-finite morphisms of schemes. Several results in commutative algebra imply the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Éléments De Géométrie Algébrique
The (''EGA''; from French: "Elements of Algebraic Geometry") by Alexander Grothendieck (assisted by Jean Dieudonné) is a rigorous treatise on algebraic geometry that was published (in eight parts or fascicles) from 1960 through 1967 by the . In it, Grothendieck established systematic foundations of algebraic geometry, building upon the concept of schemes, which he defined. The work is now considered the foundation and basic reference of modern algebraic geometry. Editions Initially thirteen chapters were planned, but only the first four (making a total of approximately 1500 pages) were published. Much of the material which would have been found in the following chapters can be found, in a less polished form, in the '' Séminaire de géométrie algébrique'' (known as ''SGA''). Indeed, as explained by Grothendieck in the preface of the published version of ''SGA'', by 1970 it had become clear that incorporating all of the planned material in ''EGA'' would require significan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Birational
In mathematics, birational geometry is a field of algebraic geometry in which the goal is to determine when two algebraic varieties are isomorphic outside lower-dimensional subsets. This amounts to studying mappings that are given by rational functions rather than polynomials; the map may fail to be defined where the rational functions have poles. Birational maps Rational maps A rational map from one variety (understood to be irreducible) X to another variety Y, written as a dashed arrow , is defined as a morphism from a nonempty open subset U \subset X to Y. By definition of the Zariski topology used in algebraic geometry, a nonempty open subset U is always dense in X, in fact the complement of a lower-dimensional subset. Concretely, a rational map can be written in coordinates using rational functions. Birational maps A birational map from ''X'' to ''Y'' is a rational map such that there is a rational map inverse to ''f''. A birational map induces an isomorphism from ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Separable Degree
In field theory, a branch of algebra, an algebraic field extension E/F is called a separable extension if for every \alpha\in E, the minimal polynomial of \alpha over is a separable polynomial (i.e., its formal derivative is not the zero polynomial, or equivalently it has no repeated roots in any extension field).Isaacs, p. 281 There is also a more general definition that applies when is not necessarily algebraic over . An extension that is not separable is said to be ''inseparable''. Every algebraic extension of a field of characteristic zero is separable, and every algebraic extension of a finite field is separable.Isaacs, Theorem 18.11, p. 281 It follows that most extensions that are considered in mathematics are separable. Nevertheless, the concept of separability is important, as the existence of inseparable extensions is the main obstacle for extending many theorems proved in characteristic zero to non-zero characteristic. For example, the fundamental theorem of Galoi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Closure
In mathematics, particularly abstract algebra, an algebraic closure of a field ''K'' is an algebraic extension of ''K'' that is algebraically closed. It is one of many closures in mathematics. Using Zorn's lemmaMcCarthy (1991) p.21Kaplansky (1972) pp.74-76 or the weaker ultrafilter lemma, it can be shown that every field has an algebraic closure, and that the algebraic closure of a field ''K'' is unique up to an isomorphism that fixes every member of ''K''. Because of this essential uniqueness, we often speak of ''the'' algebraic closure of ''K'', rather than ''an'' algebraic closure of ''K''. The algebraic closure of a field ''K'' can be thought of as the largest algebraic extension of ''K''. To see this, note that if ''L'' is any algebraic extension of ''K'', then the algebraic closure of ''L'' is also an algebraic closure of ''K'', and so ''L'' is contained within the algebraic closure of ''K''. The algebraic closure of ''K'' is also the smallest algebraically closed ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Function Field (scheme Theory)
The sheaf of rational functions ''KX'' of a scheme ''X'' is the generalization to scheme theory of the notion of function field of an algebraic variety in classical algebraic geometry. In the case of algebraic varieties, such a sheaf associates to each open set ''U'' the ring of all rational functions on that open set; in other words, ''KX''(''U'') is the set of fractions of regular functions on ''U''. Despite its name, ''KX'' does not always give a field for a general scheme ''X''. Simple cases In the simplest cases, the definition of ''KX'' is straightforward. If ''X'' is an ( irreducible) affine algebraic variety, and if ''U'' is an open subset of ''X'', then ''KX''(''U'') will be the fraction field of the ring of regular functions on ''U''. Because ''X'' is affine, the ring of regular functions on ''U'' will be a localization of the global sections of ''X'', and consequently ''KX'' will be the constant sheaf whose value is the fraction field of the global sections of ''X'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Dominant Morphism
In algebraic geometry, a morphism between algebraic varieties is a function between the varieties that is given locally by polynomials. It is also called a regular map. A morphism from an algebraic variety to the affine line is also called a regular function. A regular map whose inverse is also regular is called biregular, and the biregular maps are the isomorphisms of algebraic varieties. Because regular and biregular are very restrictive conditions – there are no non-constant regular functions on projective varieties – the concepts of rational and birational maps are widely used as well; they are partial functions that are defined locally by rational fractions instead of polynomials. An algebraic variety has naturally the structure of a locally ringed space; a morphism between algebraic varieties is precisely a morphism of the underlying locally ringed spaces. Definition If ''X'' and ''Y'' are closed subvarieties of \mathbb^n and \mathbb^m (so they are affine varietie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Locally Noetherian Scheme
In algebraic geometry, a Noetherian scheme is a scheme that admits a finite covering by open affine subsets \operatorname A_i, where each A_i is a Noetherian ring. More generally, a scheme is locally Noetherian if it is covered by spectra of Noetherian rings. Thus, a scheme is Noetherian if and only if it is locally Noetherian and compact. As with Noetherian rings, the concept is named after Emmy Noether. It can be shown that, in a locally Noetherian scheme, if  \operatorname A is an open affine subset, then ''A'' is a Noetherian ring; in particular, \operatorname A is a Noetherian scheme if and only if ''A'' is a Noetherian ring. For a locally Noetherian scheme ''X,'' the local rings \mathcal_ are also Noetherian rings. A Noetherian scheme is a Noetherian topological space. But the converse is false in general; consider, for example, the spectrum of a non-Noetherian valuation ring. The definitions extend to formal schemes. Properties and Noetherian hypotheses Having ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Local Ring
In mathematics, more specifically in ring theory, local rings are certain rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on algebraic varieties or manifolds, or of algebraic number fields examined at a particular place, or prime. Local algebra is the branch of commutative algebra that studies commutative local rings and their modules. In practice, a commutative local ring often arises as the result of the localization of a ring at a prime ideal. The concept of local rings was introduced by Wolfgang Krull in 1938 under the name ''Stellenringe''. The English term ''local ring'' is due to Zariski. Definition and first consequences A ring ''R'' is a local ring if it has any one of the following equivalent properties: * ''R'' has a unique maximal left ideal. * ''R'' has a unique maximal right ideal. * 1 ≠ 0 and the sum of any two non- units in ''R'' is a non-unit. * 1 ≠ 0 and if ''x ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Normal Ring
In commutative algebra, an integrally closed domain ''A'' is an integral domain whose integral closure in its field of fractions is ''A'' itself. Spelled out, this means that if ''x'' is an element of the field of fractions of ''A'' that is a root of a monic polynomial with coefficients in ''A,'' then ''x'' is itself an element of ''A.'' Many well-studied domains are integrally closed, as shown by the following chain of class inclusions: An explicit example is the ring of integers Z, a Euclidean domain. All regular local rings are integrally closed as well. A ring whose localizations at all prime ideals are integrally closed domains is a normal ring. Basic properties Let ''A'' be an integrally closed domain with field of fractions ''K'' and let ''L'' be a field extension of ''K''. Then ''x''∈''L'' is integral over ''A'' if and only if it is algebraic over ''K'' and its minimal polynomial over ''K'' has coefficients in ''A''. In particular, this means that any ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]