Generic Property
In mathematics, properties that hold for "typical" examples are called generic properties. For instance, a generic property of a class of functions is one that is true of "almost all" of those functions, as in the statements, "A generic polynomial does not have a root at zero," or "A generic square matrix is invertible." As another example, a generic property of a space is a property that holds at "almost all" points of the space, as in the statement, "If is a smooth function between smooth manifolds, then a generic point of is not a critical value of ." (This is by Sard's theorem.) There are many different notions of "generic" (what is meant by "almost all") in mathematics, with corresponding dual notions of "almost none" (negligible set); the two main classes are: * In measure theory, a generic property is one that holds almost everywhere, with the dual concept being null set, meaning "with probability 0". * In topology and algebraic geometry, a generic property is one t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Open Set
In mathematics, an open set is a generalization of an Interval (mathematics)#Definitions_and_terminology, open interval in the real line. In a metric space (a Set (mathematics), set with a metric (mathematics), distance defined between every two points), an open set is a set that, with every point in it, contains all points of the metric space that are sufficiently near to (that is, all points whose distance to is less than some value depending on ). More generally, an open set is a member of a given Set (mathematics), collection of Subset, subsets of a given set, a collection that has the property of containing every union (set theory), union of its members, every finite intersection (set theory), intersection of its members, the empty set, and the whole set itself. A set in which such a collection is given is called a topological space, and the collection is called a topology (structure), topology. These conditions are very loose, and allow enormous flexibility in the choice ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Random Graph
In mathematics, random graph is the general term to refer to probability distributions over graphs. Random graphs may be described simply by a probability distribution, or by a random process which generates them. The theory of random graphs lies at the intersection between graph theory and probability theory. From a mathematical perspective, random graphs are used to answer questions about the properties of ''typical'' graphs. Its practical applications are found in all areas in which complex networks need to be modeled – many random graph models are thus known, mirroring the diverse types of complex networks encountered in different areas. In a mathematical context, ''random graph'' refers almost exclusively to the Erdős–Rényi random graph model. In other contexts, any graph model may be referred to as a ''random graph''. Models A random graph is obtained by starting with a set of ''n'' isolated vertices and adding successive edges between them at random. The a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Asymptotically Almost Surely
In probability theory, an event is said to happen almost surely (sometimes abbreviated as a.s.) if it happens with probability 1 (with respect to the probability measure). In other words, the set of outcomes on which the event does not occur has probability 0, even though the set might not be empty. The concept is analogous to the concept of "almost everywhere" in measure theory. In probability experiments on a finite sample space with a non-zero probability for each outcome, there is no difference between ''almost surely'' and ''surely'' (since having a probability of 1 entails including all the sample points); however, this distinction becomes important when the sample space is an infinite set, because an infinite set can have non-empty subsets of probability 0. Some examples of the use of this concept include the strong and uniform versions of the law of large numbers, the continuity of the paths of Brownian motion, and the infinite monkey theorem. The terms almost certainly ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sufficiently Large
In the mathematical areas of number theory and analysis, an infinite sequence or a function is said to eventually have a certain property, if it does not have the said property across all its ordered instances, but will after some instances have passed. The use of the term "eventually" can be often rephrased as "for sufficiently large numbers", and can be also extended to the class of properties that apply to elements of any ordered set (such as sequences and subsets of \mathbb). Notation The general form where the phrase eventually (or sufficiently large) is found appears as follows: :P is ''eventually'' true for x (P is true for ''sufficiently large'' x), where \forall and \exists are the universal and existential quantifiers, which is actually a shorthand for: :\exists a \in \mathbb such that P is true \forall x \ge a or somewhat more formally: :\exists a \in \mathbb: \forall x \in \mathbb:x \ge a \Rightarrow P(x) This does not necessarily mean that any particular ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cocountable
In mathematics, a cocountable subset of a set X is a subset Y whose complement in X is a countable set. In other words, Y contains all but countably many elements of X . Since the rational numbers are a countable subset of the reals, for example, the irrational numbers are a cocountable subset of the reals. If the complement is finite, then one says Y is cofinite. σ-algebras The set of all subsets of X that are either countable or cocountable forms a σ-algebra, i.e., it is closed under the operations of countable unions, countable intersections, and complementation. This σ-algebra is the ''countable-cocountable algebra'' on X . It is the smallest σ-algebra containing every singleton set. Topology The cocountable topology (also called the "countable complement topology") on any set X consists of the empty set In mathematics, the empty set or void set is the unique Set (mathematics), set having no Element (mathematics), elements; its size or cardi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cofinite
In mathematics, a cofinite subset of a set X is a subset A whose complement in X is a finite set. In other words, A contains all but finitely many elements of X. If the complement is not finite, but is countable, then one says the set is cocountable. These arise naturally when generalizing structures on finite sets to infinite sets, particularly on infinite products, as in the product topology or direct sum. This use of the prefix "" to describe a property possessed by a set's mplement is consistent with its use in other terms such as " meagre set". Boolean algebras The set of all subsets of X that are either finite or cofinite forms a Boolean algebra, which means that it is closed under the operations of union, intersection, and complementation. This Boolean algebra is the on X. In the other direction, a Boolean algebra A has a unique non-principal ultrafilter (that is, a maximal filter not generated by a single element of the algebra) if and only if there exists an inf ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Almost All
In mathematics, the term "almost all" means "all but a negligible quantity". More precisely, if X is a set (mathematics), set, "almost all elements of X" means "all elements of X but those in a negligible set, negligible subset of X". The meaning of "negligible" depends on the mathematical context; for instance, it can mean finite set, finite, countable set, countable, or null set, null. In contrast, "almost no" means "a negligible quantity"; that is, "almost no elements of X" means "a negligible quantity of elements of X". Meanings in different areas of mathematics Prevalent meaning Throughout mathematics, "almost all" is sometimes used to mean "all (elements of an infinite set) except for finite set, finitely many". This use occurs in philosophy as well. Similarly, "almost all" can mean "all (elements of an uncountable set) except for countable set, countably many". Examples: * Almost all positive integers are greater than 1012. * Almost all prime numbers are odd (2 is the only ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Discrete Mathematics
Discrete mathematics is the study of mathematical structures that can be considered "discrete" (in a way analogous to discrete variables, having a bijection with the set of natural numbers) rather than "continuous" (analogously to continuous functions). Objects studied in discrete mathematics include integers, Graph (discrete mathematics), graphs, and Statement (logic), statements in Mathematical logic, logic. By contrast, discrete mathematics excludes topics in "continuous mathematics" such as real numbers, calculus or Euclidean geometry. Discrete objects can often be enumeration, enumerated by integers; more formally, discrete mathematics has been characterized as the branch of mathematics dealing with countable sets (finite sets or sets with the same cardinality as the natural numbers). However, there is no exact definition of the term "discrete mathematics". The set of objects studied in discrete mathematics can be finite or infinite. The term finite mathematics is sometime ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Law Of Large Numbers
In probability theory, the law of large numbers is a mathematical law that states that the average of the results obtained from a large number of independent random samples converges to the true value, if it exists. More formally, the law of large numbers states that given a sample of independent and identically distributed values, the sample mean converges to the true mean. The law of large numbers is important because it guarantees stable long-term results for the averages of some random events. For example, while a casino may lose money in a single spin of the roulette wheel, its earnings will tend towards a predictable percentage over a large number of spins. Any winning streak by a player will eventually be overcome by the parameters of the game. Importantly, the law applies (as the name indicates) only when a ''large number'' of observations are considered. There is no principle that a small number of observations will coincide with the expected value or that a stre ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Almost Surely
In probability theory, an event is said to happen almost surely (sometimes abbreviated as a.s.) if it happens with probability 1 (with respect to the probability measure). In other words, the set of outcomes on which the event does not occur has probability 0, even though the set might not be empty. The concept is analogous to the concept of "almost everywhere" in measure theory. In probability experiments on a finite sample space with a non-zero probability for each outcome, there is no difference between ''almost surely'' and ''surely'' (since having a probability of 1 entails including all the sample points); however, this distinction becomes important when the sample space is an infinite set, because an infinite set can have non-empty subsets of probability 0. Some examples of the use of this concept include the strong and uniform versions of the law of large numbers, the continuity of the paths of Brownian motion, and the infinite monkey theorem. The terms almost certai ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Liouville Number
In number theory, a Liouville number is a real number x with the property that, for every positive integer n, there exists a pair of integers (p,q) with q>1 such that :0<\left, x-\frac\<\frac. The inequality implies that Liouville numbers possess an excellent sequence of approximations. In 1844, Joseph Liouville proved a bound showing that there is a limit to how well s can be approximated by rational numbers, and he defined Liouville numbers specifically so that they would have rational approximations better than the ones allowed by this bound. Liouville also exhibited examples of Liouville nu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |