Function Field (scheme Theory)
The sheaf of rational functions ''KX'' of a scheme ''X'' is the generalization to scheme theory of the notion of function field of an algebraic variety in classical algebraic geometry. In the case of algebraic varieties, such a sheaf associates to each open set ''U'' the ring of all rational functions on that open set; in other words, ''KX''(''U'') is the set of fractions of regular functions on ''U''. Despite its name, ''KX'' does not always give a field for a general scheme ''X''. Simple cases In the simplest cases, the definition of ''KX'' is straightforward. If ''X'' is an ( irreducible) affine algebraic variety, and if ''U'' is an open subset of ''X'', then ''KX''(''U'') will be the fraction field of the ring of regular functions on ''U''. Because ''X'' is affine, the ring of regular functions on ''U'' will be a localization of the global sections of ''X'', and consequently ''KX'' will be the constant sheaf whose value is the fraction field of the global sections of ''X'' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Scheme (mathematics)
In mathematics, specifically algebraic geometry, a scheme is a structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities (the equations and define the same algebraic variety but different schemes) and allowing "varieties" defined over any commutative ring (for example, Fermat curves are defined over the integers). Scheme theory was introduced by Alexander Grothendieck in 1960 in his treatise '' Éléments de géométrie algébrique'' (EGA); one of its aims was developing the formalism needed to solve deep problems of algebraic geometry, such as the Weil conjectures (the last of which was proved by Pierre Deligne). Strongly based on commutative algebra, scheme theory allows a systematic use of methods of topology and homological algebra. Scheme theory also unifies algebraic geometry with much of number theory, which eventually led to Wiles's proof of Fermat's Last Theorem. Schemes elaborate the fundamental idea that an a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dense Set
In topology and related areas of mathematics, a subset ''A'' of a topological space ''X'' is said to be dense in ''X'' if every point of ''X'' either belongs to ''A'' or else is arbitrarily "close" to a member of ''A'' — for instance, the rational numbers are a dense subset of the real numbers because every real number either is a rational number or has a rational number arbitrarily close to it (see Diophantine approximation). Formally, A is dense in X if the smallest closed subset of X containing A is X itself. The of a topological space X is the least cardinality of a dense subset of X. Definition A subset A of a topological space X is said to be a of X if any of the following equivalent conditions are satisfied: The smallest closed subset of X containing A is X itself. The closure of A in X is equal to X. That is, \operatorname_X A = X. The interior of the complement of A is empty. That is, \operatorname_X (X \setminus A) = \varnothing. Every point in X eith ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Curve
In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane curve can be completed in a projective algebraic plane curve by homogenization of a polynomial, homogenizing its defining polynomial. Conversely, a projective algebraic plane curve of homogeneous equation can be restricted to the affine algebraic plane curve of equation . These two operations are each inverse function, inverse to the other; therefore, the phrase algebraic plane curve is often used without specifying explicitly whether it is the affine or the projective case that is considered. If the defining polynomial of a plane algebraic curve is irreducible polynomial, irreducible, then one has an ''irreducible plane algebraic curve''. Otherwise, the algebraic curve is the union of one or several irreducible curves, called its ''Irreduc ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Transcendence Degree
In mathematics, a transcendental extension L/K is a field extension such that there exists an element in the field L that is transcendental over the field K; that is, an element that is not a root of any univariate polynomial with coefficients in K. In other words, a transcendental extension is a field extension that is not algebraic. For example, \mathbb and \mathbb are both transcendental extensions of \mathbb. A transcendence basis of a field extension L/K (or a transcendence basis of L over K) is a maximal algebraically independent subset of L over K. Transcendence bases share many properties with bases of vector spaces. In particular, all transcendence bases of a field extension have the same cardinality, called the transcendence degree of the extension. Thus, a field extension is a transcendental extension if and only if its transcendence degree is nonzero. Transcendental extensions are widely used in algebraic geometry. For example, the dimension of an algebraic varie ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Field Extension
In mathematics, particularly in algebra, a field extension is a pair of fields K \subseteq L, such that the operations of ''K'' are those of ''L'' restricted to ''K''. In this case, ''L'' is an extension field of ''K'' and ''K'' is a subfield of ''L''. For example, under the usual notions of addition and multiplication, the complex numbers are an extension field of the real numbers; the real numbers are a subfield of the complex numbers. Field extensions are fundamental in algebraic number theory, and in the study of polynomial roots through Galois theory, and are widely used in algebraic geometry. Subfield A subfield K of a field L is a subset K\subseteq L that is a field with respect to the field operations inherited from L. Equivalently, a subfield is a subset that contains the multiplicative identity 1, and is closed under the operations of addition, subtraction, multiplication, and taking the inverse of a nonzero element of K. As , the latter definition implies K and L ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Variety
Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the solution set, set of solutions of a system of polynomial equations over the real number, real or complex numbers. Modern definitions generalize this concept in several different ways, while attempting to preserve the geometric intuition behind the original definition. Conventions regarding the definition of an algebraic variety differ slightly. For example, some definitions require an algebraic variety to be Irreducible component, irreducible, which means that it is not the Union (set theory), union of two smaller Set (mathematics), sets that are Closed set, closed in the Zariski topology. Under this definition, non-irreducible algebraic varieties are called algebraic sets. Other conventions do not require irreducibility. The fundamental theorem of algebra establishes a link between algebra and geometry by showing that a mon ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Birational Geometry
In mathematics, birational geometry is a field of algebraic geometry in which the goal is to determine when two algebraic varieties are isomorphic outside lower-dimensional subsets. This amounts to studying Map (mathematics), mappings that are given by rational functions rather than polynomials; the map may fail to be defined where the rational functions have poles. Birational maps Rational maps A rational mapping, rational map from one variety (understood to be Irreducible component, irreducible) X to another variety Y, written as a dashed arrow , is defined as a algebraic geometry#Morphism of affine varieties, morphism from a nonempty open subset U \subset X to Y. By definition of the Zariski topology used in algebraic geometry, a nonempty open subset U is always dense in X, in fact the complement of a lower-dimensional subset. Concretely, a rational map can be written in coordinates using rational functions. Birational maps A birational map from ''X'' to ''Y'' is a ration ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Localization Of A Ring
Localization or localisation may refer to: Biology * Localization of function, locating psychological functions in the brain or nervous system; see Linguistic intelligence * Localization of sensation, ability to tell what part of the body is affected by touch or other sensation; see Allochiria * Neurologic localization, in neurology, the process of deducing the location of injury based on symptoms and neurological examination * Nuclear localization signal, an amino acid sequence on the surface of a protein which acts like a 'tag' to localize the protein in the cell * Sound localization, a listener's ability to identify the location or origin of a detected sound * Subcellular localization, organization of cellular components into different regions of a cell Engineering and technology * GSM localization, determining the location of an active cell phone or wireless transceiver * Robot localization, figuring out robot's position in an environment * Indoor positioning system, a networ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Total Quotient Ring
In abstract algebra, the total quotient ring or total ring of fractions is a construction that generalizes the notion of the field of fractions of an integral domain to commutative rings ''R'' that may have zero divisors. The construction embeds ''R'' in a larger ring, giving every non-zero-divisor of ''R'' an inverse in the larger ring. If the homomorphism from ''R'' to the new ring is to be injective, no further elements can be given an inverse. Definition Let R be a commutative ring and let S be the set of elements that are not zero divisors in R; then S is a multiplicatively closed set. Hence we may localize the ring R at the set S to obtain the total quotient ring S^R=Q(R). If R is a domain, then S = R-\ and the total quotient ring is the same as the field of fractions. This justifies the notation Q(R), which is sometimes used for the field of fractions as well, since there is no ambiguity in the case of a domain. Since S in the construction contains no zero divisors, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Zero Divisor
In abstract algebra, an element of a ring is called a left zero divisor if there exists a nonzero in such that , or equivalently if the map from to that sends to is not injective. Similarly, an element of a ring is called a right zero divisor if there exists a nonzero in such that . This is a partial case of divisibility in rings. An element that is a left or a right zero divisor is simply called a zero divisor. An element that is both a left and a right zero divisor is called a two-sided zero divisor (the nonzero such that may be different from the nonzero such that ). If the ring is commutative, then the left and right zero divisors are the same. An element of a ring that is not a left zero divisor (respectively, not a right zero divisor) is called left regular or left cancellable (respectively, right regular or right cancellable). An element of a ring that is left and right cancellable, and is hence not a zero divisor, is called regular or cancellabl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Generic Point
In algebraic geometry, a generic point ''P'' of an algebraic variety ''X'' is a point in a ''general position'', at which all generic property, generic properties are true, a generic property being a property which is true for Almost everywhere, almost every point. In classical algebraic geometry, a generic point of an affine algebraic variety, affine or projective algebraic variety of dimension ''d'' is a point such that the field generated by its coordinates has transcendence degree ''d'' over the field generated by the coefficients of the equations of the variety. In scheme theory, the spectrum of a ring, spectrum of an integral domain has a unique generic point, which is the zero ideal. As the closure of this point for the Zariski topology is the whole spectrum, the definition has been extended to general topology, where a generic point of a topological space ''X'' is a point whose closure is ''X''. Definition and motivation A generic point of the topological space ''X'' i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Local Ring
In mathematics, more specifically in ring theory, local rings are certain rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on algebraic varieties or manifolds, or of algebraic number fields examined at a particular place, or prime. Local algebra is the branch of commutative algebra that studies commutative local rings and their modules. In practice, a commutative local ring often arises as the result of the localization of a ring at a prime ideal. The concept of local rings was introduced by Wolfgang Krull in 1938 under the name ''Stellenringe''. The English term ''local ring'' is due to Zariski. Definition and first consequences A ring ''R'' is a local ring if it has any one of the following equivalent properties: * ''R'' has a unique maximal left ideal. * ''R'' has a unique maximal right ideal. * 1 ≠ 0 and the sum of any two non- units in ''R'' is a non-unit. * 1 ≠ 0 and if ''x ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |