HOME
*





Finite Topology
Finite topology is a mathematical concept which has several different meanings. Finite topological space A finite topological space is a topological space, the underlying set of which is finite. In endomorphism rings If ''A'' and ''B'' are abelian groups then the finite topology on the group of homomorphisms Hom(''A'', ''B'') can be defined using the following base of open neighbourhoods of zero. :U_=\ This concept finds applications especially in the study of endomorphism ring In mathematics, the endomorphisms of an abelian group ''X'' form a ring. This ring is called the endomorphism ring of ''X'', denoted by End(''X''); the set of all homomorphisms of ''X'' into itself. Addition of endomorphisms arises naturally in ...s where we have ''A'' = ''B''. See section 14 of Krylov et al. References {{reflist General topology ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finite Topological Space
In mathematics, a finite topological space is a topological space for which the underlying set (mathematics), point set is finite set, finite. That is, it is a topological space which has only finitely many elements. Finite topological spaces are often used to provide examples of interesting phenomena or counterexamples to plausible sounding conjectures. William Thurston has called the study of finite topologies in this sense "an oddball topic that can lend good insight to a variety of questions". Topologies on a finite set Let X be a finite set. A topology (structure), topology on X is a subset \tau of P(X) (the power set of X ) such that # \varnothing \in \tau and X\in \tau . # if U, V \in \tau then U \cup V \in \tau . # if U, V \in \tau then U \cap V \in \tau . In other words, a subset \tau of P(X) is a topology if \tau contains both \varnothing and X and is closed under finite intersection (set theory), intersections and arbitrary union ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topological Space
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate. A topological space is the most general type of a mathematical space that allows for the definition of limits, continuity, and connectedness. Common types of topological spaces include Euclidean spaces, metric spaces and manifolds. Although very general, the concept of topological spaces is fundamental, and used in virtually every branch of modern mathematics. The study of topologi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Abelian Groups
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after early 19th century mathematician Niels Henrik Abel. The concept of an abelian group underlies many fundamental algebraic structures, such as fields, rings, vector spaces, and algebras. The theory of abelian groups is generally simpler than that of their non-abelian counterparts, and finite abelian groups are very well understood and fully classified. Definition An abelian group is a set A, together with an operation \cdot that combines any two elements a and b of A to form another element of A, denoted a \cdot b. The sym ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Base (topology)
In mathematics, a base (or basis) for the topology of a topological space is a family \mathcal of open subsets of such that every open set of the topology is equal to the union of some sub-family of \mathcal. For example, the set of all open intervals in the real number line \R is a basis for the Euclidean topology on \R because every open interval is an open set, and also every open subset of \R can be written as a union of some family of open intervals. Bases are ubiquitous throughout topology. The sets in a base for a topology, which are called , are often easier to describe and use than arbitrary open sets. Many important topological definitions such as continuity and convergence can be checked using only basic open sets instead of arbitrary open sets. Some topologies have a base of open sets with specific useful properties that may make checking such topological definitions easier. Not all families of subsets of a set X form a base for a topology on X. Under some ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Endomorphism Ring
In mathematics, the endomorphisms of an abelian group ''X'' form a ring. This ring is called the endomorphism ring of ''X'', denoted by End(''X''); the set of all homomorphisms of ''X'' into itself. Addition of endomorphisms arises naturally in a pointwise manner and multiplication via endomorphism composition. Using these operations, the set of endomorphisms of an abelian group forms a (unital) ring, with the zero map 0: x \mapsto 0 as additive identity and the identity map 1: x \mapsto x as multiplicative identity. The functions involved are restricted to what is defined as a homomorphism in the context, which depends upon the category of the object under consideration. The endomorphism ring consequently encodes several internal properties of the object. As the resulting object is often an algebra over some ring ''R,'' this may also be called the endomorphism algebra. An abelian group is the same thing as a module over the ring of integers, which is the initial object ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]