Fibrations
The notion of a fibration generalizes the notion of a fiber bundle and plays an important role in algebraic topology, a branch of mathematics. Fibrations are used, for example, in postnikov-systems or obstruction theory. In this article, all mappings are continuous mappings between topological spaces. Formal definitions Homotopy lifting property A mapping p \colon E \to B satisfies the homotopy lifting property for a space X if: * for every homotopy h \colon X \times , 1\to B and * for every mapping (also called lift) \tilde h_0 \colon X \to E lifting h, _ = h_0 (i.e. h_0 = p \circ \tilde h_0) there exists a (not necessarily unique) homotopy \tilde h \colon X \times , 1\to E lifting h (i.e. h = p \circ \tilde h) with \tilde h_0 = \tilde h, _. The following commutative diagram shows the situation:^ Fibration A fibration (also called Hurewicz fibration) is a mapping p \colon E \to B satisfying the homotopy lifting property for all spaces X. The space B is called base ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cofibration
In mathematics, in particular homotopy theory, a continuous mapping :i: A \to X, where A and X are topological spaces, is a cofibration if it lets homotopy classes of maps ,S/math> be extended to homotopy classes of maps ,S/math> whenever a map f \in \text_(A,S) can be extended to a map f' \in \text_(X,S) where f'\circ i = f, hence their associated homotopy classes are equal = '\circ i/math>. This type of structure can be encoded with the technical condition of having the homotopy extension property with respect to all spaces S. This definition is dual to that of a fibration, which is required to satisfy the homotopy lifting property with respect to all spaces. This duality is informally referred to as Eckmann–Hilton duality. Because of the generality this technical condition is stated, it can be used in model categories. Definition Homotopy theory In what follows, let I = ,1/math> denote the unit interval. A map i\colon A \to X of topological spaces is called a co ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hopf Fibration
In the mathematical field of differential topology, the Hopf fibration (also known as the Hopf bundle or Hopf map) describes a 3-sphere (a hypersphere in four-dimensional space) in terms of circles and an ordinary sphere. Discovered by Heinz Hopf in 1931, it is an influential early example of a fiber bundle. Technically, Hopf found a many-to-one continuous function (or "map") from the -sphere onto the -sphere such that each distinct ''point'' of the -sphere is mapped from a distinct great circle of the -sphere . Thus the -sphere is composed of fibers, where each fiber is a circle — one for each point of the -sphere. This fiber bundle structure is denoted :S^1 \hookrightarrow S^3 \xrightarrow S^2, meaning that the fiber space (a circle) is embedded in the total space (the -sphere), and (Hopf's map) projects onto the base space (the ordinary -sphere). The Hopf fibration, like any fiber bundle, has the important property that it is locally a product space. However it i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fibration Homomorphism
The notion of a fibration generalizes the notion of a fiber bundle and plays an important role in algebraic topology, a branch of mathematics. Fibrations are used, for example, in postnikov-systems or obstruction theory. In this article, all mappings are continuous mappings between topological spaces. Formal definitions Homotopy lifting property A mapping p \colon E \to B satisfies the homotopy lifting property for a space X if: * for every homotopy h \colon X \times , 1\to B and * for every mapping (also called lift) \tilde h_0 \colon X \to E lifting h, _ = h_0 (i.e. h_0 = p \circ \tilde h_0) there exists a (not necessarily unique) homotopy \tilde h \colon X \times , 1\to E lifting h (i.e. h = p \circ \tilde h) with \tilde h_0 = \tilde h, _. The following commutative diagram shows the situation:^ Fibration A fibration (also called Hurewicz fibration) is a mapping p \colon E \to B satisfying the homotopy lifting property for all spaces X. The space B is called base s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Weak Equivalence (homotopy Theory)
In mathematics, a weak equivalence is a notion from homotopy theory that in some sense identifies objects that have the same "shape". This notion is formalized in the axiomatic definition of a model category. A model category is a category (mathematics), category with classes of morphisms called weak equivalences, fibrations, and cofibrations, satisfying several axioms. The associated homotopy category of a model category has the same objects, but the morphisms are changed in order to make the weak equivalences into isomorphisms. It is a useful observation that the associated homotopy category depends only on the weak equivalences, not on the fibrations and cofibrations. Topological spaces Model categories were defined by Daniel Quillen, Quillen as an axiomatization of homotopy theory that applies to topological spaces, but also to many other categories in abstract algebra, algebra and geometry. The example that started the subject is the category of topological spaces with Serre fi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Postnikov System
In homotopy theory, a branch of algebraic topology, a Postnikov system (or Postnikov tower) is a way of decomposing a topological space's homotopy groups using an inverse system of topological spaces whose homotopy type at degree k agrees with the truncated homotopy type of the original space X. Postnikov systems were introduced by, and are named after, Mikhail Postnikov. Definition A Postnikov system of a path-connected space X is an inverse system of spaces :\cdots \to X_n \xrightarrow X_\xrightarrow \cdots \xrightarrow X_2 \xrightarrow X_1 \xrightarrow * with a sequence of maps \phi_n\colon X \to X_n compatible with the inverse system such that # The map \phi_n\colon X \to X_n induces an isomorphism \pi_i(X) \to \pi_i(X_n) for every i\leq n. # \pi_i(X_n) = 0 for i > n. # Each map p_n\colon X_n \to X_ is a fibration, and so the fiber F_n is an Eilenberg–MacLane space, K(\pi_n(X),n). The first two conditions imply that X_1 is also a K(\pi_1(X),1)-space. More generally, if X ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Commutative Diagram
350px, The commutative diagram used in the proof of the five lemma. In mathematics, and especially in category theory, a commutative diagram is a diagram such that all directed paths in the diagram with the same start and endpoints lead to the same result. It is said that commutative diagrams play the role in category theory that equations play in algebra. Description A commutative diagram often consists of three parts: * objects (also known as ''vertices'') * morphisms (also known as ''arrows'' or ''edges'') * paths or composites Arrow symbols In algebra texts, the type of morphism can be denoted with different arrow usages: * A monomorphism may be labeled with a \hookrightarrow or a \rightarrowtail. * An epimorphism may be labeled with a \twoheadrightarrow. * An isomorphism may be labeled with a \overset. * The dashed arrow typically represents the claim that the indicated morphism exists (whenever the rest of the diagram holds); the arrow may be optionally labeled as \ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Path Space Fibration
In algebraic topology, the path space fibration over a based space (X, *) is a fibration of the form :\Omega X \hookrightarrow PX \overset\to X where *PX is the path space of ''X''; i.e., PX = \operatorname(I, X) = \ equipped with the compact-open topology. *\Omega X is the fiber of \chi \mapsto \chi(1) over the base point of ''X''; thus it is the loop space of ''X''. The space X^I consists of all maps from ''I'' to ''X'' that may not preserve the base points; it is called the free path space of ''X'' and the fibration X^I \to X given by, say, \chi \mapsto \chi(1), is called the free path space fibration. The path space fibration can be understood to be dual to the mapping cone. The reduced fibration is called the mapping fiber or, equivalently, the homotopy fiber. Mapping path space If f\colon X\to Y is any map, then the mapping path space P_f of f is the pullback of the fibration Y^I \to Y, \, \chi \mapsto \chi(1) along f. (A mapping path space satisfies the universal proper ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Homotopy Fiber
In mathematics, especially homotopy theory, the homotopy fiber (sometimes called the mapping fiber)Joseph J. Rotman, ''An Introduction to Algebraic Topology'' (1988) Springer-Verlag ''(See Chapter 11 for construction.)'' is part of a construction that associates a fibration to an arbitrary continuous function of topological spaces f:A \to B. It acts as a homotopy theoretic kernel of a mapping of topological spaces due to the fact it yields a long exact sequence of homotopy groups\cdots \to \pi_(B) \to \pi_n(\text(f)) \to \pi_n(A) \to \pi_n(B) \to \cdotsMoreover, the homotopy fiber can be found in other contexts, such as homological algebra, where the distinguished triangleC(f)_\bullet 1\to A_\bullet \to B_\bullet \xrightarrowgives a long exact sequence analogous to the long exact sequence of homotopy groups. There is a dual construction called the homotopy cofiber. Construction The homotopy fiber has a simple description for a continuous map f:A \to B. If we replace f by a f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Obstruction Theory
In mathematics, obstruction theory is a name given to two different mathematical theories, both of which yield cohomological invariants. In the original work of Stiefel and Whitney, characteristic classes were defined as obstructions to the existence of certain fields of linear independent vectors. Obstruction theory turns out to be an application of cohomology theory to the problem of constructing a cross-section of a bundle. In homotopy theory The older meaning for obstruction theory in homotopy theory relates to the procedure, inductive with respect to dimension, for extending a continuous mapping defined on a simplicial complex, or CW complex. It is traditionally called ''Eilenberg obstruction theory'', after Samuel Eilenberg. It involves cohomology groups with coefficients in homotopy groups to define obstructions to extensions. For example, with a mapping from a simplicial complex ''X'' to another, ''Y'', defined initially on the 0-skeleton of ''X'' (the vertice ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Homotopy Lifting Property
In mathematics, in particular in homotopy theory within algebraic topology, the homotopy lifting property (also known as an instance of the right lifting property or the covering homotopy axiom) is a technical condition on a continuous function from a topological space ''E'' to another one, ''B''. It is designed to support the picture of ''E'' "above" ''B'' by allowing a homotopy taking place in ''B'' to be moved "upstairs" to ''E''. For example, a covering map has a property of ''unique'' local lifting of paths to a given sheet; the uniqueness is because the fibers of a covering map are discrete spaces. The homotopy lifting property will hold in many situations, such as the projection in a vector bundle, fiber bundle or fibration, where there need be no unique way of lifting. Formal definition Assume from now on all maps are continuous functions from one topological space to another. Given a map \pi\colon E \to B, and a space X\,, one says that (X, \pi) has the homotopy lifting ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Topological Space
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate. A topological space is the most general type of a mathematical space that allows for the definition of limits, continuity, and connectedness. Common types of topological spaces include Euclidean spaces, metric spaces and manifolds. Although very general, the concept of topological spaces is fundamental, and used in virtually every branch of modern mathematics. The study of topologi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Homotopy Equivalence
In topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic (from grc, ὁμός "same, similar" and "place") if one can be "continuously deformed" into the other, such a deformation being called a homotopy (, ; , ) between the two functions. A notable use of homotopy is the definition of homotopy groups and cohomotopy groups, important invariants in algebraic topology. In practice, there are technical difficulties in using homotopies with certain spaces. Algebraic topologists work with compactly generated spaces, CW complexes, or spectra. Formal definition Formally, a homotopy between two continuous functions ''f'' and ''g'' from a topological space ''X'' to a topological space ''Y'' is defined to be a continuous function H: X \times ,1\to Y from the product of the space ''X'' with the unit interval , 1to ''Y'' such that H(x,0) = f(x) and H(x,1) = g(x) for all x \in X. If we think of th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |