HOME





Entropy Compression
In mathematics and theoretical computer science, entropy compression is an information theoretic method for proving that a random process terminates, originally used by Robin Moser to prove an algorithmic version of the Lovász local lemma.. Description To use this method, one proves that the history of the given process can be recorded in an efficient way, such that the state of the process at any past time can be recovered from the current state and this record, and such that the amount of additional information that is recorded at each step of the process is (on average) less than the amount of new information randomly generated at each step. The resulting growing discrepancy in total information content can never exceed the fixed amount of information in the current state, from which it follows that the process must eventually terminate. This principle can be formalized and made rigorous using Kolmogorov complexity.. Example An example given by both Fortnow and Tao concerns th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Information Theory
Information theory is the scientific study of the quantification, storage, and communication of information. The field was originally established by the works of Harry Nyquist and Ralph Hartley, in the 1920s, and Claude Shannon in the 1940s. The field is at the intersection of probability theory, statistics, computer science, statistical mechanics, information engineering, and electrical engineering. A key measure in information theory is entropy. Entropy quantifies the amount of uncertainty involved in the value of a random variable or the outcome of a random process. For example, identifying the outcome of a fair coin flip (with two equally likely outcomes) provides less information (lower entropy) than specifying the outcome from a roll of a die (with six equally likely outcomes). Some other important measures in information theory are mutual information, channel capacity, error exponents, and relative entropy. Important sub-fields of information theory include s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Terence Tao
Terence Chi-Shen Tao (; born 17 July 1975) is an Australian-American mathematician. He is a professor of mathematics at the University of California, Los Angeles (UCLA), where he holds the James and Carol Collins chair. His research includes topics in harmonic analysis, partial differential equations, algebraic combinatorics, arithmetic combinatorics, geometric combinatorics, probability theory, compressed sensing and analytic number theory. Tao was born to ethnic Chinese immigrant parents and raised in Adelaide. Tao won the Fields Medal in 2006 and won the Royal Medal and Breakthrough Prize in Mathematics in 2014. He is also a 2006 MacArthur Fellow. Tao has been the author or co-author of over three hundred research papers. He is widely regarded as one of the greatest living mathematicians and has been referred to as the "Mozart of mathematics". Life and career Family Tao's parents are first-generation immigrants from Hong Kong to Australia.''Wen Wei Po'', Page A4, 24 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Degree (graph Theory)
In graph theory, the degree (or valency) of a vertex of a graph is the number of edges that are incident to the vertex; in a multigraph, a loop contributes 2 to a vertex's degree, for the two ends of the edge. The degree of a vertex v is denoted \deg(v) or \deg v. The maximum degree of a graph G, denoted by \Delta(G), and the minimum degree of a graph, denoted by \delta(G), are the maximum and minimum of its vertices' degrees. In the multigraph shown on the right, the maximum degree is 5 and the minimum degree is 0. In a regular graph, every vertex has the same degree, and so we can speak of ''the'' degree of the graph. A complete graph (denoted K_n, where n is the number of vertices in the graph) is a special kind of regular graph where all vertices have the maximum possible degree, n-1. In a signed graph, the number of positive edges connected to the vertex v is called positive deg(v) and the number of connected negative edges is entitled negative deg(v). Handshaking le ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Edge Coloring
In graph theory, an edge coloring of a graph is an assignment of "colors" to the edges of the graph so that no two incident edges have the same color. For example, the figure to the right shows an edge coloring of a graph by the colors red, blue, and green. Edge colorings are one of several different types of graph coloring. The edge-coloring problem asks whether it is possible to color the edges of a given graph using at most different colors, for a given value of , or with the fewest possible colors. The minimum required number of colors for the edges of a given graph is called the chromatic index of the graph. For example, the edges of the graph in the illustration can be colored by three colors but cannot be colored by two colors, so the graph shown has chromatic index three. By Vizing's theorem, the number of colors needed to edge color a simple graph is either its maximum degree or . For some graphs, such as bipartite graphs and high-degree planar graphs, the number of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Acyclic Coloring
In graph theory, an acyclic coloring is a (proper) vertex coloring in which every 2-chromatic subgraph is acyclic. The acyclic chromatic number of a graph is the fewest colors needed in any acyclic coloring of . Acyclic coloring is often associated with graphs embedded on non-plane surfaces. Upper bounds A(''G'') ≤ 2 if and only if ''G'' is acyclic. Bounds on A(''G'') in terms of Δ(''G''), the maximum degree of ''G'', include the following: * A(''G'') ≤ 4 if Δ(''G'') = 3. * A(''G'') ≤ 5 if Δ(''G'') = 4. * A(''G'') ≤ 7 if Δ(''G'') = 5. * A(''G'') ≤ 12 if Δ(''G'') = 6. A milestone in the study of acyclic coloring is the following affirmative answer to a conjecture of Grünbaum: :Theorem A(''G'') ≤ 5 if ''G'' is planar graph. introduced acyclic coloring and acyclic chromatic number, and conjectured the result in the above theorem. Borodin's proof involved several years of painstaking inspection of 450 reducible configurations. One consequence of thi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal Of The ACM
The ''Journal of the ACM'' is a peer-reviewed scientific journal covering computer science in general, especially theoretical aspects. It is an official journal of the Association for Computing Machinery. Its current editor-in-chief An editor-in-chief (EIC), also known as lead editor or chief editor, is a publication's editorial leader who has final responsibility for its operations and policies. The highest-ranking editor of a publication may also be titled editor, managing ... is Venkatesan Guruswami. The journal was established in 1954 and "computer scientists universally hold the ''Journal of the ACM'' in high esteem". See also * '' Communications of the ACM'' References External links * Publications established in 1954 Computer science journals Association for Computing Machinery academic journals Bimonthly journals English-language journals {{compu-journal-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gábor Tardos
Gábor Tardos (born 11 July 1964) is a Hungarian mathematician, currently a professor at Central European University and previously a Canada Research Chair at Simon Fraser University. He works mainly in combinatorics and computer science. He is the younger brother of Éva Tardos. Education and career Gábor Tardos received his PhD in Mathematics from Eötvös University, Budapest in 1988. His counsellors were László Babai and Péter Pálfy. He held postdoctoral posts at the University of Chicago, Rutgers University, University of Toronto and the Princeton Institute for Advanced Study. From 2005 to 2013, he served as a Canada Research Chair of discrete and computational geometry at Simon Fraser University. He then returned to Budapest to the Alfréd Rényi Institute of Mathematics where he has served as a research fellow since 1991. Mathematical results Tardos started with a result in universal algebra: he exhibited a maximal clone of order-preserving operations that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Existence Theorem
In mathematics, an existence theorem is a theorem which asserts the existence of a certain object. It might be a statement which begins with the phrase " there exist(s)", or it might be a universal statement whose last quantifier is existential (e.g., "for all , , ... there exist(s) ..."). In the formal terms of symbolic logic, an existence theorem is a theorem with a prenex normal form involving the existential quantifier, even though in practice, such theorems are usually stated in standard mathematical language. For example, the statement that the sine function is continuous everywhere, or any theorem written in big O notation, can be considered as theorems which are existential by nature—since the quantification can be found in the definitions of the concepts used. A controversy that goes back to the early twentieth century concerns the issue of purely theoretic existence theorems, that is, theorems which depend on non-constructive foundational material such as the axi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Algorithmic Lovász Local Lemma
In theoretical computer science, the algorithmic Lovász local lemma gives an algorithmic way of constructing objects that obey a system of constraints with limited dependence. Given a finite set of ''bad'' events in a probability space with limited dependence amongst the ''Ai''s and with specific bounds on their respective probabilities, the Lovász local lemma proves that with non-zero probability all of these events can be avoided. However, the lemma is non-constructive in that it does not provide any insight on ''how'' to avoid the bad events. If the events are determined by a finite collection of mutually independent random variables, a simple Las Vegas algorithm with expected polynomial runtime proposed by Robin Moser and Gábor Tardos can compute an assignment to the random variables such that all events are avoided. Review of Lovász local lemma The Lovász Local Lemma is a powerful tool commonly used in the probabilistic method to prove the existence of certai ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Infinite Recursion
In computer programming, an infinite loop (or endless loop) is a sequence of instructions that, as written, will continue endlessly, unless an external intervention occurs ("pull the plug"). It may be intentional. Overview This differs from: * "a type of computer program that runs the same instructions continuously until it is either stopped or interrupted." Consider the following pseudocode: how_many = 0 while is_there_more_data() do how_many = how_many + 1 end display "the number of items counted = " how_many ''The same instructions'' were run ''continuously until it was stopped or interrupted'' . . . by the ''FALSE'' returned at some point by the function ''is_there_more_data''. By contrast, the following loop will not end by itself: birds = 1 fish = 2 while birds + fish > 1 do birds = 3 - birds fish = 3 - fish end ''birds'' will alternate being 1 or 2, while ''fish'' will alternate being 2 or 1. The loop will not stop unless an external intervention occur ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Random Process
In probability theory and related fields, a stochastic () or random process is a mathematical object usually defined as a family of random variables. Stochastic processes are widely used as mathematical models of systems and phenomena that appear to vary in a random manner. Examples include the growth of a bacterial population, an electrical current fluctuating due to thermal noise, or the movement of a gas molecule. Stochastic processes have applications in many disciplines such as biology, chemistry, ecology, neuroscience, physics, image processing, signal processing, control theory, information theory, computer science, cryptography and telecommunications. Furthermore, seemingly random changes in financial markets have motivated the extensive use of stochastic processes in finance. Applications and the study of phenomena have in turn inspired the proposal of new stochastic processes. Examples of such stochastic processes include the Wiener process or Brownian motion process, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Natural Logarithm
The natural logarithm of a number is its logarithm to the base of the mathematical constant , which is an irrational and transcendental number approximately equal to . The natural logarithm of is generally written as , , or sometimes, if the base is implicit, simply . Parentheses are sometimes added for clarity, giving , , or . This is done particularly when the argument to the logarithm is not a single symbol, so as to prevent ambiguity. The natural logarithm of is the power to which would have to be raised to equal . For example, is , because . The natural logarithm of itself, , is , because , while the natural logarithm of is , since . The natural logarithm can be defined for any positive real number as the area under the curve from to (with the area being negative when ). The simplicity of this definition, which is matched in many other formulas involving the natural logarithm, leads to the term "natural". The definition of the natural logarithm can the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]