HOME



picture info

Eccentricity (mathematics)
In mathematics, the eccentricity of a Conic section#Eccentricity, conic section is a non-negative real number that uniquely characterizes its shape. One can think of the eccentricity as a measure of how much a conic section deviates from being circular. In particular: * The eccentricity of a circle is 0. * The eccentricity of a non-circular ellipse is between 0 and 1. * The eccentricity of a parabola is 1. * The eccentricity of a hyperbola is greater than 1. * The eccentricity of a pair of Line (geometry), lines is \infty. Two conic sections with the same eccentricity are similarity (geometry), similar. Definitions Any conic section can be defined as the Locus (mathematics), locus of points whose distances to a point (the focus) and a line (the directrix) are in a constant ratio. That ratio is called the ''eccentricity'', commonly denoted as . The eccentricity can also be defined in terms of the intersection of a plane and a Cone (geometry), double-napped cone associated with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Eccentricity
Eccentricity or eccentric may refer to: * Eccentricity (behavior), odd behavior on the part of a person, as opposed to being "normal" Mathematics, science and technology Mathematics * Off-Centre (geometry), center, in geometry * Eccentricity (graph theory) of a vertex in a graph * Eccentricity (mathematics), a parameter associated with every conic section Orbital mechanics * Orbital eccentricity, in astrodynamics, a measure of the non-circularity of an orbit * Eccentric anomaly, the angle between the direction of periapsis and the current position of an object on its orbit * Eccentricity vector, in celestial mechanics, a dimensionless vector with direction pointing from apoapsis to periapsis * Eccentric, a type of deferent, a circle or sphere used in obsolete epicyclical systems to carry a planet around the Earth or Sun Other uses in science and technology * Eccentric (mechanism), a wheel that rotates on an axle that is displaced from the focus of the circle described by the wh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ellipse
In mathematics, an ellipse is a plane curve surrounding two focus (geometry), focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special type of ellipse in which the two focal points are the same. The elongation of an ellipse is measured by its eccentricity (mathematics), eccentricity e, a number ranging from e = 0 (the Limiting case (mathematics), limiting case of a circle) to e = 1 (the limiting case of infinite elongation, no longer an ellipse but a parabola). An ellipse has a simple algebraic solution for its area, but for Perimeter of an ellipse, its perimeter (also known as circumference), Integral, integration is required to obtain an exact solution. The largest and smallest diameters of an ellipse, also known as its width and height, are typically denoted and . An ellipse has four extreme points: two ''Vertex (geometry), vertices'' at the endpoints of the major axis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cubic Surface
In mathematics, a cubic surface is a surface in 3-dimensional space defined by one polynomial equation of degree 3. Cubic surfaces are fundamental examples in algebraic geometry. The theory is simplified by working in projective space rather than affine space, and so cubic surfaces are generally considered in projective 3-space \mathbf^3. The theory also becomes more uniform by focusing on surfaces over the complex numbers rather than the real numbers; note that a complex surface has real dimension 4. A simple example is the Fermat cubic surface :x^3+y^3+z^3+w^3=0 in \mathbf^3. Many properties of cubic surfaces hold more generally for del Pezzo surfaces. Rationality of cubic surfaces A central feature of smooth scheme, smooth cubic surfaces ''X'' over an algebraically closed field is that they are all rational variety, rational, as shown by Alfred Clebsch in 1866. That is, there is a one-to-one correspondence defined by rational functions between the projective plane \mathbf^2 min ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rectangular Hyperbola
In mathematics, a hyperbola is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected components or branches, that are mirror images of each other and resemble two infinite bows. The hyperbola is one of the three kinds of conic section, formed by the intersection of a plane and a double cone. (The other conic sections are the parabola and the ellipse. A circle is a special case of an ellipse.) If the plane intersects both halves of the double cone but does not pass through the apex of the cones, then the conic is a hyperbola. Besides being a conic section, a hyperbola can arise as the locus of points whose difference of distances to two fixed foci is constant, as a curve for each point of which the rays to two fixed foci are reflections across the tangent line at that point, or as the solution of certain bivariate quadratic equations such as the reciproca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Flattening
Flattening is a measure of the compression of a circle or sphere along a diameter to form an ellipse or an ellipsoid of revolution (spheroid) respectively. Other terms used are ellipticity, or oblateness. The usual notation for flattening is f and its definition in terms of the semi-major and semi-minor axes, semi-axes a and b of the resulting ellipse or ellipsoid is : f =\frac . The ''compression factor'' is b/a in each case; for the ellipse, this is also its aspect ratio. Definitions There are three variants: the flattening f, sometimes called the ''first flattening'', as well as two other "flattenings" f' and n, each sometimes called the ''second flattening'', sometimes only given a symbol, or sometimes called the ''second flattening'' and ''third flattening'', respectively. In the following, a is the larger dimension (e.g. semimajor axis), whereas b is the smaller (semiminor axis). All flattenings are zero for a circle (). :: Identities The flattenings can be related t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pythagorean Theorem Ellipse Eccentricity
Pythagorean, meaning of or pertaining to the ancient Ionian mathematician, philosopher, and music theorist Pythagoras, may refer to: Philosophy * Pythagoreanism, the esoteric and metaphysical beliefs purported to have been held by Pythagoras * Neopythagoreanism, a school of philosophy reviving Pythagorean doctrines that became prominent in the 1st and 2nd centuries AD * Pythagorean diet, the name for vegetarianism before the nineteenth century Mathematics * Pythagorean theorem * Pythagorean triple * Pythagorean prime * Pythagorean trigonometric identity * Table of Pythagoras, another name for the multiplication table Music * Pythagorean comma * Pythagorean hammers * Pythagorean tuning Pythagorean tuning is a system of musical tuning in which the frequency ratios of all intervals are determined by choosing a sequence of fifthsBruce Benward and Marilyn Nadine Saker (2003). ''Music: In Theory and Practice'', seventh editi ... Other uses * Pythagorean cup * Pythagore ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Angular Eccentricity
Angular eccentricity is one of many parameters which arise in the study of the ellipse or ellipsoid. It is denoted here by α (alpha). It may be defined in terms of the eccentricity, ''e'', or the aspect ratio, ''b/a'' (the ratio of the semi-minor axis and the semi-major axis): :\alpha=\sin^\!e=\cos^\left(\frac\right). \,\! Angular eccentricity is not currently used in English language publications on mathematics, geodesy or map projections but it does appear in older literature. Any non-dimensional parameter of the ellipse may be expressed in terms of the angular eccentricity. Such expressions are listed in the following table after the conventional definitions.Rapp, Richard H. (1991). ''Geometric Geodesy, Part I'', Dept. of Geodetic Science and Surveying, Ohio State Univ., Columbus, Ohi/ref> in terms of the semi-axes. The notation for these parameters varies. Here we follow Rapp: :: The alternative expressions for the flattenings would guard against large cancellati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Semi-minor Axis
In geometry, the major axis of an ellipse is its longest diameter: a line segment that runs through the center and both foci, with ends at the two most widely separated points of the perimeter. The semi-major axis (major semiaxis) is the longest semidiameter or one half of the major axis, and thus runs from the centre, through a focus, and to the perimeter. The semi-minor axis (minor semiaxis) of an ellipse or hyperbola is a line segment that is at right angles with the semi-major axis and has one end at the center of the conic section. For the special case of a circle, the lengths of the semi-axes are both equal to the radius of the circle. The length of the semi-major axis of an ellipse is related to the semi-minor axis's length through the eccentricity and the semi-latus rectum \ell, as follows: The semi-major axis of a hyperbola is, depending on the convention, plus or minus one half of the distance between the two branches. Thus it is the distance from the cente ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ellipse And Hyperbola
In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special type of ellipse in which the two focal points are the same. The elongation of an ellipse is measured by its eccentricity e, a number ranging from e = 0 (the limiting case of a circle) to e = 1 (the limiting case of infinite elongation, no longer an ellipse but a parabola). An ellipse has a simple algebraic solution for its area, but for its perimeter (also known as circumference), integration is required to obtain an exact solution. The largest and smallest diameters of an ellipse, also known as its width and height, are typically denoted and . An ellipse has four extreme points: two '' vertices'' at the endpoints of the major axis and two ''co-vertices'' at the endpoints of the minor axis. Analytically, the equation of a standard ellipse centered at ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Determinant
In mathematics, the determinant is a Scalar (mathematics), scalar-valued function (mathematics), function of the entries of a square matrix. The determinant of a matrix is commonly denoted , , or . Its value characterizes some properties of the matrix and the linear map represented, on a given basis (linear algebra), basis, by the matrix. In particular, the determinant is nonzero if and only if the matrix is invertible matrix, invertible and the corresponding linear map is an linear isomorphism, isomorphism. However, if the determinant is zero, the matrix is referred to as singular, meaning it does not have an inverse. The determinant is completely determined by the two following properties: the determinant of a product of matrices is the product of their determinants, and the determinant of a triangular matrix is the product of its diagonal entries. The determinant of a matrix is :\begin a & b\\c & d \end=ad-bc, and the determinant of a matrix is : \begin a & b & c \\ d & e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


The College Mathematics Journal
The ''College Mathematics Journal'' is an expository magazine aimed at teachers of college mathematics, particularly those teaching the first two years. It is published by Taylor & Francis on behalf of the Mathematical Association of America and is a continuation of the ''Two-Year College Mathematics Journal''. It covers all aspects of mathematics. It publishes articles intended to enhance undergraduate instruction and classroom learning, including expository articles, short notes, problems, and "mathematical ephemera" such as fallacious proofs, quotations, cartoons, poetry, and humour. Paid circulation in 2008 was 9,000, and total circulation was 9,500. The MAA gives the George Pólya Awards annually "for articles of expository excellence" published in the ''College Mathematics Journal''. References External links *''The College Mathematics Journal''at JSTOR''The College Mathematics Journal''at Taylor & Francis Taylor & Francis Group is an international company orig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]