Dysprosium Hydroxide
Dysprosium(III) hydroxide is an inorganic compound with the chemical formula Dy(OH)3. Chemical properties Dysprosium(III) hydroxide reacts with acids An acid is a molecule or ion capable of either donating a proton (i.e. hydrogen cation, H+), known as a Brønsted–Lowry acid, or forming a covalent bond with an electron pair, known as a Lewis acid. The first category of acids are the ... and produces dysprosium(III) salts: : Dy(OH)3 + 3 H+ → Dy3+ + 3 H2O Dysprosium(III) hydroxide decomposes to DyO(OH) at elevated temperatures. Further decomposition produces Dy2O3. The reactions are: : : References {{hydroxides Dysprosium compounds Hydroxides ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Dysprosium Oxide
Dysprosium oxide (Dy2O3) is a sesquioxide compound of the rare earth metal dysprosium. It is a pastel yellowish-greenish, slightly hygroscopic powder having specialized uses in ceramics, glass, phosphors, lasers, dysprosium metal halide lamps, and as a Faraday rotator A Faraday rotator is a polarization rotator based on the Faraday effect, a magneto-optic effect involving transmission of light through a material when a longitudinal static magnetic field is present. The state of polarization (such as the axis o .... It can react with acids to produce the corresponding dysprosium(III) salts: :Dy2O3 + 6 HCl → 2 DyCl3 + 3 H2O References Dysprosium compounds Sesquioxides {{Inorganic-compound-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Terbium(III) Hydroxide
Terbium(III) hydroxide is an inorganic compound with chemical formula Tb(OH)3. Chemical properties Terbium(III) hydroxide reacts with acids An acid is a molecule or ion capable of either donating a proton (i.e. hydrogen cation, H+), known as a Brønsted–Lowry acid, or forming a covalent bond with an electron pair, known as a Lewis acid. The first category of acids are the ... and produces terbium(III) salts: : Tb(OH)3 + 3 H+ → Tb3+ + 3 H2O Terbium(III) hydroxide decomposes to TbO(OH) at 340°C. Further decomposition at 500°C generates Tb4O7 and O2. References {{terbium compounds Terbium compounds Hydroxides ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Holmium(III) Hydroxide
Holmium(III) hydroxide is an inorganic compound with the chemical formula Ho(OH)3. Chemical properties Holmium(III) hydroxide reacts with acids to produce holmium(III) salts: : Ho(OH)3 + 3 H+ → Ho3+ + 3 H2O Holmium(III) hydroxide undergoes thermal decomposition Thermal decomposition, or thermolysis, is a chemical decomposition of a substance caused by heat. The decomposition temperature of a substance is the temperature at which the substance chemically decomposes. The reaction is usually endothermic ... to HoO(OH) at elevated temperatures. Further decomposition at higher temperatures produces Ho2O3. References {{hydroxides Hydroxides Holmium compounds ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Inorganic Compound
An inorganic compound is typically a chemical compound that lacks carbon–hydrogen bondsthat is, a compound that is not an organic compound. The study of inorganic compounds is a subfield of chemistry known as ''inorganic chemistry''. Inorganic compounds comprise most of the Earth's crust, although the compositions of the deep Mantle (geology), mantle remain active areas of investigation. All allotropes (structurally different pure forms of an element) and some simple carbon compounds are often considered inorganic. Examples include the allotropes of carbon (graphite, diamond, buckminsterfullerene, graphene, etc.), carbon monoxide , carbon dioxide , carbides, and salt (chemistry), salts of inorganic anions such as carbonates, cyanides, cyanates, thiocyanates, isothiocyanates, etc. Many of these are normal parts of mostly organic systems, including organisms; describing a chemical as inorganic does not necessarily mean that it cannot occur within life, living things. History ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Chemical Formula
A chemical formula is a way of presenting information about the chemical proportions of atoms that constitute a particular chemical compound or molecule, using chemical element symbols, numbers, and sometimes also other symbols, such as parentheses, dashes, brackets, commas and ''plus'' (+) and ''minus'' (−) signs. These are limited to a single typographic line of symbols, which may include subscripts and superscripts. A chemical formula is not a chemical name since it does not contain any words. Although a chemical formula may imply certain simple chemical structures, it is not the same as a full chemical structural formula. Chemical formulae can fully specify the structure of only the simplest of molecules and chemical substances, and are generally more limited in power than chemical names and structural formulae. The simplest types of chemical formulae are called '' empirical formulae'', which use letters and numbers indicating the numerical ''proportions'' of atoms ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Acids
An acid is a molecule or ion capable of either donating a proton (i.e. hydrogen cation, H+), known as a Brønsted–Lowry acid, or forming a covalent bond with an electron pair, known as a Lewis acid. The first category of acids are the proton donors, or Brønsted–Lowry acids. In the special case of aqueous solutions, proton donors form the hydronium ion H3O+ and are known as Arrhenius acids. Brønsted and Lowry generalized the Arrhenius theory to include non-aqueous solvents. A Brønsted–Lowry or Arrhenius acid usually contains a hydrogen atom bonded to a chemical structure that is still energetically favorable after loss of H+. Aqueous Arrhenius acids have characteristic properties that provide a practical description of an acid. Acids form aqueous solutions with a sour taste, can turn blue litmus red, and react with bases and certain metals (like calcium) to form salts. The word ''acid'' is derived from the Latin , meaning 'sour'. An aqueous solution of an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Dysprosium Compounds
Dysprosium is a chemical element; it has symbol Dy and atomic number 66. It is a rare-earth element in the lanthanide series with a metallic silver luster. Dysprosium is never found in nature as a free element, though, like other lanthanides, it is found in various minerals, such as xenotime. Naturally occurring dysprosium is composed of seven isotopes, the most abundant of which is 164Dy. Dysprosium was first identified in 1886 by Paul Émile Lecoq de Boisbaudran, but it was not isolated in pure form until the development of ion-exchange techniques in the 1950s. Dysprosium is used to produce neodymium-iron-boron (NdFeB) magnets, which are crucial for electric vehicle motors and the efficient operation of wind turbines. It is used for its high thermal neutron absorption cross-section in making control rods in nuclear reactors, for its high magnetic susceptibility () in data-storage applications, and as a component of Terfenol-D (a magnetostrictive material). Soluble dysprosium sal ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |