Discrete-time Fourier Transform
In mathematics, the discrete-time Fourier transform (DTFT) is a form of Fourier analysis that is applicable to a sequence of discrete values. The DTFT is often used to analyze samples of a continuous function. The term ''discrete-time'' refers to the fact that the transform operates on discrete data, often samples whose interval has units of time. From uniformly spaced samples it produces a function of frequency that is a periodic summation of the continuous Fourier transform of the original continuous function. In simpler terms, when you take the DTFT of regularly-spaced samples of a continuous signal, you get repeating (and possibly overlapping) copies of the signal's frequency spectrum, spaced at intervals corresponding to the sampling frequency. Under certain theoretical conditions, described by the sampling theorem, the original continuous function can be recovered perfectly from the DTFT and thus from the original discrete samples. The DTFT itself is a continuous functi ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Discrete Fourier Transform
In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of equally-spaced Sampling (signal processing), samples of a function (mathematics), function into a same-length sequence of equally-spaced samples of the discrete-time Fourier transform (DTFT), which is a complex number, complex-valued function of frequency. The interval at which the DTFT is sampled is the reciprocal of the duration of the input sequence. An inverse DFT (IDFT) is a Fourier series, using the DTFT samples as coefficients of complex number, complex Sine wave, sinusoids at the corresponding DTFT frequencies. It has the same sample-values as the original input sequence. The DFT is therefore said to be a frequency domain representation of the original input sequence. If the original sequence spans all the non-zero values of a function, its DTFT is continuous (and periodic), and the DFT provides discrete samples of one cycle. If the original sequence is one cycle of a periodic fu ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Periodogram
In signal processing, a periodogram is an estimate of the spectral density of a signal. The term was coined by Arthur Schuster in 1898. Today, the periodogram is a component of more sophisticated methods (see spectral estimation). It is the most common tool for examining the amplitude vs frequency characteristics of FIR filters and window functions. FFT spectrum analyzers are also implemented as a time-sequence of periodograms. Definition There are at least two different definitions in use today. One of them involves time-averaging, and one does not. Time-averaging is also the purview of other articles ( Bartlett's method and Welch's method). This article is not about time-averaging. The definition of interest here is that the power spectral density of a continuous function, , is the Fourier transform of its auto-correlation function (see Cross-correlation theorem, Spectral density, and Wiener–Khinchin theorem): \mathcal\ = X(f)\cdot X^*(f) = \left, X(f) \^2. Computa ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Convolution Theorem
In mathematics, the convolution theorem states that under suitable conditions the Fourier transform of a convolution of two functions (or signals) is the product of their Fourier transforms. More generally, convolution in one domain (e.g., time domain) equals point-wise multiplication in the other domain (e.g., frequency domain). Other versions of the convolution theorem are applicable to various Fourier-related transforms. Functions of a continuous variable Consider two functions u(x) and v(x) with Fourier transforms U and V: :\begin U(f) &\triangleq \mathcal\(f) = \int_^u(x) e^ \, dx, \quad f \in \mathbb\\ V(f) &\triangleq \mathcal\(f) = \int_^v(x) e^ \, dx, \quad f \in \mathbb \end where \mathcal denotes the Fourier transform operator. The transform may be normalized in other ways, in which case constant scaling factors (typically 2\pi or \sqrt) will appear in the convolution theorem below. The convolution of u and v is defined by: :r(x) = \(x) \triangleq \int_^ u(\tau) ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Window Function
In signal processing and statistics, a window function (also known as an apodization function or tapering function) is a mathematical function that is zero-valued outside of some chosen interval. Typically, window functions are symmetric around the middle of the interval, approach a maximum in the middle, and taper away from the middle. Mathematically, when another function or waveform/data-sequence is "multiplied" by a window function, the product is also zero-valued outside the interval: all that is left is the part where they overlap, the "view through the window". Equivalently, and in actual practice, the segment of data within the window is first isolated, and then only that data is multiplied by the window function values. Thus, tapering, not segmentation, is the main purpose of window functions. The reasons for examining segments of a longer function include detection of transient events and time-averaging of frequency spectra. The duration of the segments is determine ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Spectral Leakage
The Fourier transform of a function of time, s(t), is a complex-valued function of frequency, S(f), often referred to as a frequency spectrum. Any LTI system theory, linear time-invariant operation on s(t) produces a new spectrum of the form H(f)•S(f), which changes the relative magnitudes and/or angles (Phase (waves), phase) of the non-zero values of S(f). Any other type of operation creates new frequency components that may be referred to as spectral leakage in the broadest sense. Sampling (signal processing), Sampling, for instance, produces leakage, which we call ''aliasing, aliases'' of the original spectral component. For Fourier transform purposes, Sampling (signal processing), sampling is modeled as a product between s(t) and a Dirac comb function. The spectrum of a product is the convolution between S(f) and another function, which inevitably creates the new frequency components. But the term 'leakage' usually refers to the effect of ''windowing'', which is the produ ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
FIR Filter
In signal processing, a finite impulse response (FIR) filter is a filter whose impulse response (or response to any finite length input) is of ''finite'' duration, because it settles to zero in finite time. This is in contrast to infinite impulse response (IIR) filters, which may have internal feedback and may continue to respond indefinitely (usually decaying). The impulse response (that is, the output in response to a Kronecker delta input) of an Nth-order discrete-time FIR filter lasts exactly N+1 samples (from first nonzero element through last nonzero element) before it then settles to zero. FIR filters can be discrete-time or continuous-time, and digital or analog. Definition For a causal discrete-time FIR filter of order ''N'', each value of the output sequence is a weighted sum of the most recent input values: :\begin y &= b_0 x + b_1 x -1+ \cdots + b_N x -N\\ &= \sum_^N b_i\cdot x -i \end where: * x /math> is the input signal, * y /math> is the output sign ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Spectral Leakage
The Fourier transform of a function of time, s(t), is a complex-valued function of frequency, S(f), often referred to as a frequency spectrum. Any LTI system theory, linear time-invariant operation on s(t) produces a new spectrum of the form H(f)•S(f), which changes the relative magnitudes and/or angles (Phase (waves), phase) of the non-zero values of S(f). Any other type of operation creates new frequency components that may be referred to as spectral leakage in the broadest sense. Sampling (signal processing), Sampling, for instance, produces leakage, which we call ''aliasing, aliases'' of the original spectral component. For Fourier transform purposes, Sampling (signal processing), sampling is modeled as a product between s(t) and a Dirac comb function. The spectrum of a product is the convolution between S(f) and another function, which inevitably creates the new frequency components. But the term 'leakage' usually refers to the effect of ''windowing'', which is the produ ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Filter Bank
In signal processing, a filter bank (or filterbank) is an array of bandpass filters that separates the input signal into multiple components, each one carrying a sub-band of the original signal. One application of a filter bank is a graphic equalizer, which can attenuate the components differently and recombine them into a modified version of the original signal. The process of decomposition performed by the filter bank is called ''analysis'' (meaning analysis of the signal in terms of its components in each sub-band); the output of analysis is referred to as a subband signal with as many subbands as there are filters in the filter bank. The reconstruction process is called ''synthesis'', meaning reconstitution of a complete signal resulting from the filtering process. In digital signal processing, the term ''filter bank'' is also commonly applied to a bank of receivers. The difference is that receivers also down-convert the subbands to a low center frequency that can be re-sa ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Spectral Leakage
The Fourier transform of a function of time, s(t), is a complex-valued function of frequency, S(f), often referred to as a frequency spectrum. Any LTI system theory, linear time-invariant operation on s(t) produces a new spectrum of the form H(f)•S(f), which changes the relative magnitudes and/or angles (Phase (waves), phase) of the non-zero values of S(f). Any other type of operation creates new frequency components that may be referred to as spectral leakage in the broadest sense. Sampling (signal processing), Sampling, for instance, produces leakage, which we call ''aliasing, aliases'' of the original spectral component. For Fourier transform purposes, Sampling (signal processing), sampling is modeled as a product between s(t) and a Dirac comb function. The spectrum of a product is the convolution between S(f) and another function, which inevitably creates the new frequency components. But the term 'leakage' usually refers to the effect of ''windowing'', which is the produ ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |