![]() |
Direct Analysis In Real Time
In mass spectrometry, direct analysis in real time (DART) is an ion source that produces electronically or vibronically excited-state species from gases such as helium, argon, or nitrogen that ionize atmospheric molecules or dopant molecules. The ions generated from atmospheric or dopant molecules undergo ion-molecule reactions with the sample molecules to produce analyte ions. Analytes with low ionization energy may be ionized directly. The DART ionization process can produce positive or negative ions depending on the potential applied to the exit electrode. This ionization can occur for species desorbed directly from surfaces such as bank notes, tablets, bodily fluids (blood, saliva and urine), polymers, glass, plant leaves, fruits & vegetables, clothing, and living organisms. DART is applied for rapid analysis of a wide variety of samples at atmospheric pressure and in the open laboratory environment. It does not need a specific sample preparation, so it can be used for the ana ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Mass Spectrometry
Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a ''mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is used in many different fields and is applied to pure samples as well as complex mixtures. A mass spectrum is a type of plot of the ion signal as a function of the mass-to-charge ratio. These spectra are used to determine the elemental or isotopic signature of a sample, the masses of particles and of molecules, and to elucidate the chemical identity or structure of molecules and other chemical compounds. In a typical MS procedure, a sample, which may be solid, liquid, or gaseous, is ionization, ionized, for example by bombarding it with a Electron ionization, beam of electrons. This may cause some of the sample's molecules to break up into positively charged fragments or simply become positively charged without fragmenting. These ions (fragmen ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Atmospheric-pressure Chemical Ionization
Atmospheric pressure chemical ionization (APCI) is an ionization method used in mass spectrometry which utilizes gas-phase ion-molecule reactions at atmospheric pressure (105 Pa), commonly coupled with high-performance liquid chromatography (HPLC). APCI is a soft ionization method similar to chemical ionization where primary ions are produced on a solvent spray. The main usage of APCI is for polar and relatively less polar thermally stable compounds with molecular weight less than 1500 Da. The application of APCI with HPLC has gained a large popularity in trace analysis detection such as steroids, pesticides and also in pharmacology for drug metabolites. Instrument structure A typical APCI source usually consists of three main parts: a sample inlet, a corona discharge needle, and an ion transfer region under intermediate pressure. In the case of the heated nebulizer inlet from an LC, as shown in the figure, the eluate flows at 0.2 to 2.0 mL/min into a pneumatic nebulizer which c ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
![]() |
Capillary Electrophoresis
Capillary electrophoresis (CE) is a family of electrokinetic separation methods performed in submillimeter diameter capillaries and in micro- and nanofluidic channels. Very often, CE refers to capillary zone electrophoresis (CZE), but other electrophoresis, electrophoretic techniques including capillary gel electrophoresis (CGE), capillary isoelectric focusing (CIEF), capillary isotachophoresis and micellar electrokinetic chromatography (MEKC) belong also to this class of methods. In CE methods, analytes migrate through electrolyte solutions under the influence of an electric field. Analytes can be separated according to ionic mobility and/or partitioning into an alternate phase via non-covalent interactions. Additionally, analytes may be concentrated or "focused" by means of gradients in Electrical resistivity and conductivity, conductivity and pH. Instrumentation The instrumentation needed to perform capillary electrophoresis is relatively simple. A basic schematic of a capil ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
![]() |
HPLC
High-performance liquid chromatography (HPLC), formerly referred to as high-pressure liquid chromatography, is a technique in analytical chemistry used to separate, identify, and quantify specific components in mixtures. The mixtures can originate from food, chemicals, pharmaceuticals, biological, environmental and agriculture, etc., which have been dissolved into liquid solutions. It relies on high pressure pumps, which deliver mixtures of various solvents, called the mobile phase, which flows through the system, collecting the sample mixture on the way, delivering it into a cylinder, called the column, filled with solid particles, made of adsorbent material, called the stationary phase. Each component in the sample interacts differently with the adsorbent material, causing different migration rates for each component. These different rates lead to separation as the species flow out of the column into a specific detector such as UV detectors. The output of the detector is ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
![]() |
Gas Chromatography
Gas chromatography (GC) is a common type of chromatography used in analytical chemistry for Separation process, separating and analyzing compounds that can be vaporized without Chemical decomposition, decomposition. Typical uses of GC include testing the purity of a particular substance, or separating the different components of a mixture. In preparative chromatography, GC can be used to prepare pure compounds from a mixture. Gas chromatography is also sometimes known as vapor-phase chromatography (VPC), or gas–liquid partition chromatography (GLPC). These alternative names, as well as their respective abbreviations, are frequently used in scientific literature. Gas chromatography is the process of separating compounds in a mixture by injecting a gaseous or liquid sample into a mobile phase, typically called the carrier gas, and passing the gas through a stationary phase. The mobile phase is usually an inert gas or an Reactivity (chemistry), unreactive gas such as helium, arg ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
![]() |
Thin-layer Chromatography
Thin-layer chromatography (TLC) is a chromatography technique that separates components in non-volatile mixtures. It is performed on a TLC plate made up of a non-reactive solid coated with a thin layer of adsorbent material. This is called the stationary phase. The sample is deposited on the plate, which is eluted with a solvent or solvent mixture known as the mobile phase (or eluent). This solvent then moves up the plate via capillary action. As with all chromatography, some compounds are more attracted to the mobile phase, while others are more attracted to the stationary phase. Therefore, different compounds move up the TLC plate at different speeds and become separated. To visualize colourless compounds, the plate is viewed under UV light or is stained.Jork, H., Funk, W., Fischer, W., Wimmer, H. (1990): Thin-Layer Chromatography: Reagents and Detection Methods, Volume 1a, VCH, Weinheim, Testing different stationary and mobile phases is often necessary to obtain well-defined an ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
JEOL
is a major developer and manufacturer of electron microscopes and other scientific instruments, industrial equipment and medical equipment. Its headquarters are in Tokyo, Japan, with 25 domestic and foreign subsidiaries and associated companies as of 2014. It is listed in the top ten businesses worldwide for analytical laboratory instrument manufacturing. JEOL's instruments are used by researchers around the world, including the University of Cambridge, University of Oxford, and MIT. It has been included in the Activest Lux Nanotech Mutual Fund and the WestLB Nanotech Fund. History Scientists in Japan began to collaborate as early as 1939 on the development of an electron microscope. Kenji Kazato and Kazuo Ito met while working at the Naval Central Institute in Tokyo during World War II. After the war, Kazato attracted Ito and a group of others to Mobara, Chiba Prefecture, Japan. This initial group developed a prototype magnetic field–type electron microscope called the ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Vacuum
A vacuum (: vacuums or vacua) is space devoid of matter. The word is derived from the Latin adjective (neuter ) meaning "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often discuss ideal test results that would occur in a ''perfect'' vacuum, which they sometimes simply call "vacuum" or free space, and use the term partial vacuum to refer to an actual imperfect vacuum as one might have in a laboratory or in space. In engineering and applied physics on the other hand, vacuum refers to any space in which the pressure is considerably lower than atmospheric pressure. The Latin term ''in vacuo'' is used to describe an object that is surrounded by a vacuum. The ''quality'' of a partial vacuum refers to how closely it approaches a perfect vacuum. Other things equal, lower gas pressure means higher-quality vacuum. For example, a typical vacuum cleaner produces enough suction to reduce air pressur ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
![]() |
Ambient Pressure
The ambient pressure on an object is the pressure of the surrounding medium, such as a gas or liquid, in contact with the object. Atmosphere Within the atmosphere, the ambient pressure decreases as elevation increases. By measuring ambient atmospheric pressure, a pilot may determine altitude (see pitot-static system). Near sea level, a change in ambient pressure of 1 millibar is taken to represent a change in height of . Underwater The ambient pressure in water with a free surface is a combination of the hydrostatic pressure due to the weight of the water column and the atmospheric pressure on the free surface. This increases approximately linearly with depth. Since water is much denser than air, much greater changes in ambient pressure can be experienced under water. Each of depth adds another bar (unit) , bar to the ambient pressure. Ambient-pressure diving is underwater diving exposed to the water pressure at depth, rather than in a pressure-excluding atmospheric diving suit ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
DART Ion Source Capsule
Dart or DART may refer to: Arts, entertainment and media * Dart, the equipment in the game of darts * Dart (comics), an Image Comics superhero * Dart, a character from ''G.I. Joe'' * Dart, a ''Thomas & Friends'' railway engine character * Dart Feld, protagonist in the video game ''The Legend of Dragoon'' * ''Dart'' (poetry collection), a 2002 collection by British poet Alice Oswald * Dart (sewing), a fold sewn into the fabric of a garment Businesses and organizations * Dart (commercial vehicle), a former manufacturer of commercial vehicles in Iowa * Dart Container, a US cup and container manufacturer * Dart Container Line, a shipping consortium that operated from 1969 to 1981 * Dart Drug, a former US drug-store chain * Dart Group, a British airline and industrial holding company * Dart Industries, a US drug-store group founded by Justin Whitlock Dart * Dart Music, a digital music aggregator based in Tennessee * Dart National Bank, a private bank in Michigan * Direct Action a ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Adduct
In chemistry, an adduct (; alternatively, a contraction of "addition product") is a product of a direct addition of two or more distinct molecules, resulting in a single reaction product containing all atoms of all components. The resultant is considered a distinct molecular species. Examples include the addition of sodium bisulfite to an aldehyde to give a sulfonate. It can be considered as a single product resulting from the direct combination of different molecules which comprises all atoms of the reactant molecules. Adducts often form between Lewis acids and Lewis bases. A good example is the formation of adducts between the Lewis acid borane and the oxygen atom in the Lewis bases, tetrahydrofuran (THF): or diethyl ether: . Many Lewis acids and Lewis bases reacting in the gas phase or in non-aqueous solvents to form adducts have been examined in the ECW model. Trimethylborane, trimethyltin chloride and bis(hexafluoroacetylacetonato)copper(II) are examples of Lewi ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |