Digital Artifact
Digital artifact in information science, is any undesired or unintended alteration in data introduced in a digital process by an involved technique and/or technology. Digital artifact can be of any content types including text, audio, video, image, animation or a combination. Information science In information science, digital artifacts result from: *Hardware malfunction: In computer graphics, visual artifacts may be generated whenever a hardware component such as the processor, memory chip, cabling malfunctions, etc., corrupts data. Examples of malfunctions include physical damage, overheating, insufficient voltage and GPU overclocking. Common types of hardware artifacts are texture corruption and T-vertices in 3D graphics, and pixelization in MPEG compressed video. *Software malfunction: Artifacts may be caused by algorithm flaws such as decoding/encoding audio or video, or a poor pseudo-random number generator that would introduce artifacts distinguishable from the d ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pseudo-random Number Generator
A pseudorandom number generator (PRNG), also known as a deterministic random bit generator (DRBG), is an algorithm for generating a sequence of numbers whose properties approximate the properties of sequences of random numbers. The PRNG-generated sequence is not truly random, because it is completely determined by an initial value, called the PRNG's ''seed'' (which may include truly random values). Although sequences that are closer to truly random can be generated using hardware random number generators, ''pseudorandom number generators'' are important in practice for their speed in number generation and their reproducibility. PRNGs are central in applications such as simulations (e.g. for the Monte Carlo method), electronic games (e.g. for procedural generation), and cryptography. Cryptographic applications require the output not to be predictable from earlier outputs, and more elaborate algorithms, which do not inherit the linearity of simpler PRNGs, are needed. Good statist ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Filter (signal Processing)
In signal processing, a filter is a device or process that removes some unwanted components or features from a Signal (electronics), signal. Filtering is a class of signal processing, the defining feature of filters being the complete or partial suppression of some aspect of the signal. Most often, this means removing some frequency, frequencies or frequency bands. However, filters do not exclusively act in the frequency domain; especially in the field of image processing many other targets for filtering exist. Correlations can be removed for certain frequency components and not for others without having to act in the frequency domain. Filters are widely used in electronics and telecommunication, in radio, television, audio recording, radar, control systems, music synthesis, image processing, computer graphics, and structural dynamics. There are many different bases of classifying filters and these overlap in many different ways; there is no simple hierarchical classification. Fil ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Anti-aliasing Filter
An anti-aliasing filter (AAF) is a filter used before a signal sampler to restrict the bandwidth of a signal to satisfy the Nyquist–Shannon sampling theorem over the band of interest. Since the theorem states that unambiguous reconstruction of the signal from its samples is possible when the power of frequencies above the Nyquist frequency is zero, a brick wall filter is an idealized but impractical AAF. A practical AAF makes a trade off between reduced bandwidth and increased aliasing. A practical anti-aliasing filter will typically permit some aliasing to occur or attenuate or otherwise distort some in-band frequencies close to the Nyquist limit. For this reason, many practical systems sample higher than would be theoretically required by a perfect AAF in order to ensure that all frequencies of interest can be reconstructed, a practice called oversampling. Optical applications In the case of optical image sampling, as by image sensors in digital cameras, the anti ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nyquist Frequency
In signal processing, the Nyquist frequency (or folding frequency), named after Harry Nyquist, is a characteristic of a Sampling (signal processing), sampler, which converts a continuous function or signal into a discrete sequence. For a given Sampling (signal processing), sampling rate (''samples per second''), the Nyquist frequency ''(cycles per second'') is the frequency whose cycle-length (or period) is twice the interval between samples, thus ''0.5 cycle/sample''. For example, audio compact disc, CDs have a sampling rate of 44100 ''samples/second''. At ''0.5 cycle/sample'', the corresponding Nyquist frequency is 22050 ''cycles/second'' (hertz, Hz). Conversely, the Nyquist rate for sampling a 22050 Hz signal is 44100 ''samples/second''. When the highest frequency (Bandwidth (signal processing), bandwidth) of a signal is less than the Nyquist frequency of the sampler, the resulting discrete-time sequence is said to be free of the distortion known as aliasing, and the corre ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Frequency Band
Spectral bands are regions of a given spectrum, having a specific range of wavelengths or frequencies. Most often, it refers to electromagnetic bands, regions of the electromagnetic spectrum. More generally, spectral bands may also be means in the spectra of other types of signals, e.g., noise spectrum. A frequency band is an interval in the frequency domain, limited by a lower frequency and an upper frequency. For example, it may refer to a '' radio band'', such as wireless communication standards set by the International Telecommunication Union. In nuclear physics In nuclear physics, spectral bands refer to the electromagnetic emission of polyatomic systems, including condensed materials, large molecules, etc. Each '' spectral line'' corresponds to the difference in two energy levels of an atom. In molecules, these levels can split. When the number of atoms is large, one gets a continuum of energy levels, the so-called ''spectral bands''. They are often labeled in the sam ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sample-rate Conversion
Sample-rate conversion, sampling-frequency conversion or resampling is the process of changing the sampling rate or sampling frequency of a discrete signal to obtain a new discrete representation of the underlying continuous signal. Application areas include image scaling and audio/visual systems, where different sampling rates may be used for engineering, economic, or historical reasons. For example, Compact Disc Digital Audio and Digital Audio Tape systems use different sampling rates, and American television, European television, and movies all use different frame rates. Sample-rate conversion prevents changes in speed and pitch that would otherwise occur when transferring recorded material between such systems. More specific types of resampling include: ''upsampling'' or ''upscaling''; '' downsampling'', ''downscaling'', or ''decimation''; and ''interpolation''. The term multi-rate digital signal processing is sometimes used to refer to systems that incorporate sample-rate ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sampling (signal Processing)
In signal processing, sampling is the reduction of a continuous-time signal to a discrete-time signal. A common example is the conversion of a sound wave to a sequence of "samples". A sample is a value of the signal at a point in time and/or space; this definition differs from the term's usage in statistics, which refers to a set of such values. A sampler is a subsystem or operation that extracts samples from a continuous signal. A theoretical ideal sampler produces samples equivalent to the instantaneous value of the continuous signal at the desired points. The original signal can be reconstructed from a sequence of samples, up to the Nyquist limit, by passing the sequence of samples through a reconstruction filter. Theory Functions of space, time, or any other dimension can be sampled, and similarly in two or more dimensions. For functions that vary with time, let s(t) be a continuous function (or "signal") to be sampled, and let sampling be performed by measuring ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Aliasing
In signal processing and related disciplines, aliasing is a phenomenon that a reconstructed signal from samples of the original signal contains low frequency components that are not present in the original one. This is caused when, in the original signal, there are components at frequency exceeding a certain frequency called Nyquist frequency, f_s / 2, where f_s is the sampling frequency ( undersampling). This is because typical reconstruction methods use low frequency components while there are a number of frequency components, called aliases, which sampling result in the identical sample. It also often refers to the distortion or artifact that results when a signal reconstructed from samples is different from the original continuous signal. Aliasing can occur in signals sampled in time, for instance in digital audio or the stroboscopic effect, and is referred to as temporal aliasing. Aliasing in spatially sampled signals (e.g., moiré patterns in digital images) is referre ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pixelation
In computer graphics, pixelation (also spelled pixellation in British English) is caused by displaying a bitmap or a section of a bitmap at such a large size that individual pixels, small single-colored square display elements that comprise the bitmap, are visible. Such an image is said to be pixelated ( pixellated in the UK). Early graphical applications such as video games ran at very low resolutions with a small number of colors, resulting in easily visible pixels. The resulting sharp edges gave curved objects and diagonal lines an unnatural appearance. However, when the number of available colors increased to 256, it was possible to gainfully employ anti-aliasing to smooth the appearance of low-resolution objects, not eliminating pixelation but making it less jarring to the eye. Higher resolutions would soon make this type of pixelation all but invisible on the screen, but pixelation is still visible if a low-resolution image is printed on paper. In the realm of real- ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quantization (signal Processing)
Quantization, in mathematics and digital signal processing, is the process of mapping input values from a large set (often a continuous set) to output values in a (countable) smaller set, often with a finite number of elements. Rounding and truncation are typical examples of quantization processes. Quantization is involved to some degree in nearly all digital signal processing, as the process of representing a signal in digital form ordinarily involves rounding. Quantization also forms the core of essentially all lossy compression algorithms. The difference between an input value and its quantized value (such as round-off error) is referred to as quantization error, noise or distortion. A device or algorithm function, algorithmic function that performs quantization is called a quantizer. An analog-to-digital converter is an example of a quantizer. Example For example, Rounding#Round half up, rounding a real number x to the nearest integer value forms a very basic type of q ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Compression Artifact
A compression artifact (or artefact) is a noticeable distortion of media (including Image, images, Sound recording, audio, and video) caused by the application of lossy compression. Lossy data compression involves discarding some of the media's data so that it becomes small enough to be stored within the desired File size, disk space or Data stream, transmitted (''streamed'') within the available Bandwidth (computing), bandwidth (known as the data rate or bit rate). If the compressor cannot store enough data in the compressed version, the result is a loss of quality, or introduction of artifacts. The compression algorithm may not be intelligent enough to discriminate between distortions of little subjective importance and those objectionable to the user. The most common digital compression artifacts are DCT blocks, caused by the discrete cosine transform (DCT) compression algorithm used in many digital media standards, such as JPEG, MP3, and MPEG video file formats. These com ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |