Diamond Operation
   HOME



picture info

Diamond Operation
In higher category theory in mathematics, the diamond operation of simplicial sets is an operation taking two simplicial sets to construct another simplicial set. It is closely related to the join of simplicial sets and used in an alternative construction of the twisted diagonal. Definition For simplicial set X and Y, their ''diamond'' X\diamond Y is the pushout of the diagram: : X\times Y\times\Delta^1\leftarrow X\times Y\times\partial\Delta^1\rightarrow X+Y. One has a canonical map X\diamond Y\rightarrow\Delta^0\diamond\Delta^0 \cong\Delta^1 for which the fiber of 0 is X and the fiber of 1 is Y. Right adjoints Let Y be a simplicial set. The functor Y\diamond -\colon \mathbf\rightarrow Y\backslash\mathbf, X\mapsto(Y\mapsto X\diamond Y) has a right adjoint Y\backslash\mathbf\rightarrow\mathbf, (t\colon Y\rightarrow W)\mapsto t\backslash\backslash W (alternatively denoted Y\backslash\backslash W) and the functor -\diamond Y\colon \mathbf\rightarrow Y\backslash\mathbf, X\m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Higher Category Theory
In mathematics, higher category theory is the part of category theory at a ''higher order'', which means that some equalities are replaced by explicit morphism, arrows in order to be able to explicitly study the structure behind those equalities. Higher category theory is often applied in algebraic topology (especially in homotopy theory), where one studies algebraic Invariant (mathematics), invariants of topological space, spaces, such as the Fundamental groupoid, fundamental . In higher category theory, the concept of higher categorical structures, such as (), allows for a more robust treatment of homotopy theory, enabling one to capture finer homotopical distinctions, such as differentiating two topological spaces that have the same fundamental group but differ in their higher homotopy groups. This approach is particularly valuable when dealing with spaces with intricate topological features, such as the Eilenberg-MacLane space. Strict higher categories An ordinary category (m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Simplicial Set
In mathematics, a simplicial set is a sequence of sets with internal order structure ( abstract simplices) and maps between them. Simplicial sets are higher-dimensional generalizations of directed graphs. Every simplicial set gives rise to a "nice" topological space, known as its geometric realization. This realization consists of geometric simplices, glued together according to the rules of the simplicial set. Indeed, one may view a simplicial set as a purely combinatorial construction designed to capture the essence of a topological space for the purposes of homotopy theory. Specifically, the category of simplicial sets carries a natural model structure, and the corresponding homotopy category is equivalent to the familiar homotopy category of topological spaces. Formally, a simplicial set may be defined as a contravariant functor from the simplex category to the category of sets. Simplicial sets were introduced in 1950 by Samuel Eilenberg and Joseph A. Zilber. Simplic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Operation (mathematics)
In mathematics, an operation is a function from a set to itself. For example, an operation on real numbers will take in real numbers and return a real number. An operation can take zero or more input values (also called "'' operands''" or "arguments") to a well-defined output value. The number of operands is the arity of the operation. The most commonly studied operations are binary operations (i.e., operations of arity 2), such as addition and multiplication, and unary operations (i.e., operations of arity 1), such as additive inverse and multiplicative inverse. An operation of arity zero, or nullary operation, is a constant. The mixed product is an example of an operation of arity 3, also called ternary operation. Generally, the arity is taken to be finite. However, infinitary operations are sometimes considered, in which case the "usual" operations of finite arity are called finitary operations. A partial operation is defined similarly to an operatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Join (simplicial Sets)
In higher category theory in mathematics, the join of simplicial sets is an operation making the category of simplicial sets into a monoidal category. In particular, it takes two simplicial sets to construct another simplicial set. It is closely related to the diamond operation and used in the construction of the twisted diagonal. Under the nerve construction, it corresponds to the join of categories and under the geometric realization, it corresponds to the join of topological spaces. Definition For natural numbers m,p,q\in\mathbb, one has the identity:Cisinski 2019, 3.4.12. : \operatorname( +q+1 =\prod_\operatorname( \times\operatorname( , which can be extended by colimits to a functor a functor -*-\colon \mathbf\times\mathbf\rightarrow \mathbf, which together with the empty simplicial set as unit element makes the category of simplicial sets \mathbf into a monoidal category. For simplicial set X and Y, their ''join'' X*Y is the simplicial set: : (X*Y)_n =\prod_X_ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Twisted Diagonal (simplicial Sets)
In higher category theory in mathematics, the twisted diagonal of a simplicial set (for ∞-categories also called the twisted arrow ∞-category) is a construction, which generalizes the twisted diagonal of a category to which it corresponds under the nerve construction. Since the twisted diagonal of a category is the category of elements of the Hom functor, the twisted diagonal of an ∞-category can be used to define the Hom functor of an ∞-category. Twisted diagonal with the join operation For a simplicial set A define a bisimplicial set and a simplicial set with the opposite simplicial set and the join of simplicial sets by:Cisinski 2019, 5.6.1. : \mathbf(A)_ =\operatorname((\Delta^m)^\mathrm*\Delta^n,A), : \operatorname(A) =\delta^*(\mathbf(A)). The canonical morphisms (\Delta^m)^\mathrm\rightarrow(\Delta^m)^\mathrm*\Delta^n\leftarrow\Delta^n induce canonical morphisms \mathbf(A)\rightarrow A^\mathrm\boxtimes A and \operatorname(A)\rightarrow A^\mathrm\times A. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Join
Join may refer to: * Join (law), to include additional counts or additional defendants on an indictment *In mathematics: ** Join (mathematics), a least upper bound of sets orders in lattice theory ** Join (topology), an operation combining two topological spaces ** Join (category theory), an operation combining two categories ** Join (simplicial sets), an operation combining two simplicial sets ** Join (sigma algebra), a refinement of sigma algebras ** Join (algebraic geometry), a union of lines between two varieties *In computing: ** Join (relational algebra), a binary operation on tuples corresponding to the relation join of SQL *** Join (SQL), relational join, a binary operation on SQL and relational database tables *** join (Unix), a Unix command similar to relational join ** Join-calculus, a process calculus developed at INRIA for the design of distributed programming languages *** Join-pattern, generalization of Join-calculus *** Joins (concurrency library), a concurrent comput ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pushout (category Theory)
In category theory, a branch of mathematics, a pushout (also called a fibered coproduct or fibered sum or cocartesian square or amalgamated sum) is the colimit of a diagram consisting of two morphisms ''f'' : ''Z'' → ''X'' and ''g'' : ''Z'' → ''Y'' with a common domain. The pushout consists of an object ''P'' along with two morphisms ''X'' → ''P'' and ''Y'' → ''P'' that complete a commutative square with the two given morphisms ''f'' and ''g''. In fact, the defining universal property of the pushout (given below) essentially says that the pushout is the "most general" way to complete this commutative square. Common notations for the pushout are P = X \sqcup_Z Y and P = X +_Z Y. The pushout is the categorical dual of the pullback. Universal property Explicitly, the pushout of the morphisms ''f'' and ''g'' consists of an object ''P'' and two morphisms ''i''1 : ''X'' → ''P'' and ''i''2 : ''Y'' → ''P'' such that the diagram : commutes and such th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Right Adjoint
In mathematics, specifically category theory, adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are known as adjoint functors, one being the left adjoint and the other the right adjoint. Pairs of adjoint functors are ubiquitous in mathematics and often arise from constructions of "optimal solutions" to certain problems (i.e., constructions of objects having a certain universal property), such as the construction of a free group on a set in algebra, or the construction of the Stone–Čech compactification of a topological space in topology. By definition, an adjunction between categories \mathcal and \mathcal is a pair of functors (assumed to be covariant) :F: \mathcal \rightarrow \mathcal and G: \mathcal \rightarrow \mathcal and, for all objects c in \mathcal and d in \mathcal, a bijection between the respective morphism sets :\ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Terminal Object
In category theory, a branch of mathematics, an initial object of a category is an object in such that for every object in , there exists precisely one morphism . The dual notion is that of a terminal object (also called terminal element): is terminal if for every object in there exists exactly one morphism . Initial objects are also called coterminal or universal, and terminal objects are also called final. If an object is both initial and terminal, it is called a zero object or null object. A pointed category is one with a zero object. A strict initial object is one for which every morphism into is an isomorphism. Examples * The empty set is the unique initial object in Set, the category of sets. Every one-element set ( singleton) is a terminal object in this category; there are no zero objects. Similarly, the empty space is the unique initial object in Top, the category of topological spaces and every one-point space is a terminal object in this category. * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Joyal Model Structure
In higher category theory in mathematics, the Joyal model structure is a special model structure on the category of simplicial sets. It consists of three classes of morphisms between simplicial sets called ''fibrations'', ''cofibrations'' and ''weak equivalences'', which fulfill the properties of a model structure. Its fibrant objects are all ∞-categories and it furthermore models the homotopy theory of CW complexes up to homotopy equivalence, with the correspondence between simplicial sets and CW complexes being given by the geometric realization and the singular functor. The Joyal model structure is named after André Joyal. Definition The Joyal model structure is given by: * Fibrations are isofibrations.Cisinski 2019, Theorem 3.6.1. * Cofibrations are monomorphisms.Lurie 2009, ''Higher Topos Theory'', Theorem 1.3.4.1. * Weak equivalences are ''weak categorical equivalences'',Joyal 2008, Theorem 6.12. hence morphisms between simplicial sets, whose geometric realization is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Princeton University Press
Princeton University Press is an independent publisher with close connections to Princeton University. Its mission is to disseminate scholarship within academia and society at large. The press was founded by Whitney Darrow, with the financial support of Charles Scribner, as a printing press to serve the Princeton community in 1905. Its distinctive building was constructed in 1911 on William Street in Princeton. Its first book was a new 1912 edition of John Witherspoon's ''Lectures on Moral Philosophy.'' History Princeton University Press was founded in 1905 by a recent Princeton graduate, Whitney Darrow, with financial support from another Princetonian, Charles Scribner II. Darrow and Scribner purchased the equipment and assumed the operations of two already existing local publishers, that of the ''Princeton Alumni Weekly'' and the Princeton Press. The new press printed both local newspapers, university documents, '' The Daily Princetonian'', and later added book publishing ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]