Derivator
In mathematics, derivators are a proposed frameworkpg 190-195 for homological algebra giving a foundation for both Abelian group, abelian and non-abelian group, non-abelian homological algebra and various generalizations of it. They were introduced to address the deficiencies of derived category, derived categories (such as the non-functoriality of the cone construction) and provide at the same time a language for homotopical algebra. Derivators were first introduced by Alexander Grothendieck in his long unpublished 1983 manuscript ''Pursuing Stacks''. They were then further developed by him in the huge unpublished 1991 manuscript ''Les Dérivateurs'' of almost 2000 pages. Essentially the same concept was introduced (apparently independently) by Alex Heller. The manuscript has been edited for on-line publication by Georges Maltsiniotis. The theory has been further developed by several other people, including Heller, Jens Franke, Franke, Keller and Groth. Motivations One of the m ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Triangulated Category
In mathematics, a triangulated category is a category with the additional structure of a "translation functor" and a class of "exact triangles". Prominent examples are the derived category of an abelian category, as well as the stable homotopy category. The exact triangles generalize the short exact sequences in an abelian category, as well as fiber sequences and cofiber sequences in topology. Much of homological algebra is clarified and extended by the language of triangulated categories, an important example being the theory of sheaf cohomology. In the 1960s, a typical use of triangulated categories was to extend properties of sheaves on a space ''X'' to complexes of sheaves, viewed as objects of the derived category of sheaves on ''X''. More recently, triangulated categories have become objects of interest in their own right. Many equivalences between triangulated categories of different origins have been proved or conjectured. For example, the homological mirror symmetry c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Homotopical Algebra
In mathematics, homotopical algebra is a collection of concepts comprising the ''nonabelian'' aspects of homological algebra, and possibly the abelian aspects as special cases. The ''homotopical'' nomenclature stems from the fact that a common approach to such generalizations is via abstract homotopy theory, as in nonabelian algebraic topology, and in particular the theory of closed model categories. This subject has received much attention in recent years due to new foundational work of Vladimir Voevodsky, Eric Friedlander, Andrei Suslin, and others resulting in the A1 homotopy theory for quasiprojective varieties over a field. Voevodsky has used this new algebraic homotopy theory to prove the Milnor conjecture (for which he was awarded the Fields Medal) and later, in collaboration with Markus Rost, the full Bloch–Kato conjecture. See also *Derived algebraic geometry *Derivator *Cotangent complex In mathematics, the cotangent complex is a common generalisation o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Alexander Grothendieck
Alexander Grothendieck, later Alexandre Grothendieck in French (; ; ; 28 March 1928 – 13 November 2014), was a German-born French mathematician who became the leading figure in the creation of modern algebraic geometry. His research extended the scope of the field and added elements of commutative algebra, homological algebra, sheaf theory, and category theory to its foundations, while his so-called Grothendieck's relative point of view, "relative" perspective led to revolutionary advances in many areas of pure mathematics. He is considered by many to be the greatest mathematician of the twentieth century. Grothendieck began his productive and public career as a mathematician in 1949. In 1958, he was appointed a research professor at the Institut des Hautes Études Scientifiques, Institut des hautes études scientifiques (IHÉS) and remained there until 1970, when, driven by personal and political convictions, he left following a dispute over military funding. He receive ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pursuing Stacks
''Pursuing Stacks'' () is an influential 1983 mathematical manuscript by Alexander Grothendieck. It consists of a 12-page letter to Daniel Quillen followed by about 600 pages of research notes. The topic of the work is a generalized homotopy theory using higher category theory. The word "stacks" in the title refers to what are nowadays usually called " ∞-groupoids", one possible definition of which Grothendieck sketches in his manuscript. (The stacks of algebraic geometry, which also go back to Grothendieck, are not the focus of this manuscript.) Among the concepts introduced in the work are derivators and test categories. Some parts of the manuscript were later developed in: * * Overview of manuscript I. The letter to Daniel Quillen Pursuing stacks started out as a letter from Grothendieck to Daniel Quillen. In this letter he discusses Quillen's progress on the foundations for homotopy theory and remarked on the lack of progress since then. He remarks how some of his ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Homological Algebra
Homological algebra is the branch of mathematics that studies homology (mathematics), homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precursor to algebraic topology) and abstract algebra (theory of module (mathematics), modules and Syzygy (mathematics), syzygies) at the end of the 19th century, chiefly by Henri Poincaré and David Hilbert. Homological algebra is the study of homological functors and the intricate algebraic structures that they entail; its development was closely intertwined with the emergence of category theory. A central concept is that of chain complexes, which can be studied through their homology and cohomology. Homological algebra affords the means to extract information contained in these complexes and present it in the form of homological invariant (mathematics), invariants of ring (mathematics), rings, modules, topological spaces, and other "tangible ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Grothendieck Site
In category theory, a branch of mathematics, a Grothendieck topology is a structure on a category ''C'' that makes the objects of ''C'' act like the open sets of a topological space. A category together with a choice of Grothendieck topology is called a site. Grothendieck topologies axiomatize the notion of an open cover. Using the notion of covering provided by a Grothendieck topology, it becomes possible to define sheaves on a category and their cohomology. This was first done in algebraic geometry and algebraic number theory by Alexander Grothendieck to define the étale cohomology of a scheme. It has been used to define other cohomology theories since then, such as ℓ-adic cohomology, flat cohomology, and crystalline cohomology. While Grothendieck topologies are most often used to define cohomology theories, they have found other applications as well, such as to John Tate's theory of rigid analytic geometry. There is a natural way to associate a site to an ordinary ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
NLab
The ''n''Lab is a wiki for research-level notes, expositions and collaborative work, including original research, in mathematics, physics, and philosophy, with a focus on methods from type theory, category theory, and homotopy theory. The ''n''Lab espouses the "''n''-point of view" (a deliberate pun on Wikipedia's "neutral point of view") that type theory, homotopy theory, category theory, and higher category theory provide a useful unifying viewpoint for mathematics, physics and philosophy. The ''n'' in ''n''-point of view could refer to either ''n''-categories as found in higher category theory, ''n''-groupoids as found in both homotopy theory and higher category theory, or ''n''-types as found in homotopy type theory. Overview The ''n''Lab was originally conceived to provide a repository for ideas (and even new research) generated in the comments on posts at the ''n''-Category Café, a group blog run (at the time) by John C. Baez, David Corfield and Urs Schreiber. Eventua ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Space
In mathematics, algebraic spaces form a generalization of the schemes of algebraic geometry, introduced by Michael Artin for use in deformation theory. Intuitively, schemes are given by gluing together affine schemes using the Zariski topology, while algebraic spaces are given by gluing together affine schemes using the finer étale topology. Alternatively one can think of schemes as being locally isomorphic to affine schemes in the Zariski topology, while algebraic spaces are locally isomorphic to affine schemes in the étale topology. The resulting category of algebraic spaces extends the category of schemes and allows one to carry out several natural constructions that are used in the construction of moduli spaces but are not always possible in the smaller category of schemes, such as taking the quotient of a free action by a finite group (cf. the Keel–Mori theorem). Definition There are two common ways to define algebraic spaces: they can be defined as either quotients ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Scheme (mathematics)
In mathematics, specifically algebraic geometry, a scheme is a structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities (the equations and define the same algebraic variety but different schemes) and allowing "varieties" defined over any commutative ring (for example, Fermat curves are defined over the integers). Scheme theory was introduced by Alexander Grothendieck in 1960 in his treatise '' Éléments de géométrie algébrique'' (EGA); one of its aims was developing the formalism needed to solve deep problems of algebraic geometry, such as the Weil conjectures (the last of which was proved by Pierre Deligne). Strongly based on commutative algebra, scheme theory allows a systematic use of methods of topology and homological algebra. Scheme theory also unifies algebraic geometry with much of number theory, which eventually led to Wiles's proof of Fermat's Last Theorem. Schemes elaborate the fundamental idea that an a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Topos
In mathematics, a topos (, ; plural topoi or , or toposes) is a category that behaves like the category of sheaves of sets on a topological space (or more generally, on a site). Topoi behave much like the category of sets and possess a notion of localization. The Grothendieck topoi find applications in algebraic geometry, and more general elementary topoi are used in logic. The mathematical field that studies topoi is called topos theory. Grothendieck topos (topos in geometry) Since the introduction of sheaves into mathematics in the 1940s, a major theme has been to study a space by studying sheaves on a space. This idea was expounded by Alexander Grothendieck by introducing the notion of a "topos". The main utility of this notion is in the abundance of situations in mathematics where topological heuristics are very effective, but an honest topological space is lacking; it is sometimes possible to find a topos formalizing the heuristic. An important example of this progra ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |