HOME





Denying The Consequent
In propositional logic, ''modus tollens'' () (MT), also known as ''modus tollendo tollens'' (Latin for "mode that by denying denies") and denying the consequent, is a deductive argument form and a rule of inference. ''Modus tollens'' is a mixed hypothetical syllogism that takes the form of "If ''P'', then ''Q''. Not ''Q''. Therefore, not ''P''." It is an application of the general truth that if a statement is true, then so is its contrapositive. The form shows that inference from ''P implies Q'' to ''the negation of Q implies the negation of P'' is a valid argument. The history of the inference rule ''modus tollens'' goes back to antiquity. The first to explicitly describe the argument form ''modus tollens'' was Theophrastus. ''Modus tollens'' is closely related to ''modus ponens''. There are two similar, but invalid, forms of argument: affirming the consequent and denying the antecedent. See also contraposition and proof by contrapositive. Explanation The form of a ''m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Deductive Reasoning
Deductive reasoning is the process of drawing valid inferences. An inference is valid if its conclusion follows logically from its premises, meaning that it is impossible for the premises to be true and the conclusion to be false. For example, the inference from the premises "all men are mortal" and " Socrates is a man" to the conclusion "Socrates is mortal" is deductively valid. An argument is ''sound'' if it is valid ''and'' all its premises are true. One approach defines deduction in terms of the intentions of the author: they have to intend for the premises to offer deductive support to the conclusion. With the help of this modification, it is possible to distinguish valid from invalid deductive reasoning: it is invalid if the author's belief about the deductive support is false, but even invalid deductive reasoning is a form of deductive reasoning. Deductive logic studies under what conditions an argument is valid. According to the semantic approach, an argument is valid ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theophrastus
Theophrastus (; ; c. 371 – c. 287 BC) was an ancient Greek Philosophy, philosopher and Natural history, naturalist. A native of Eresos in Lesbos, he was Aristotle's close colleague and successor as head of the Lyceum (classical), Lyceum, the Peripatetic school, Peripatetic school of philosophy in Athens. Theophrastus wrote numerous treatises across all areas of philosophy, working to support, improve, expand, and develop Aristotelian system, the Aristotelian system. He made significant contributions to various fields, including ethics, metaphysics, botany, and natural history. Often considered the "father of botany" for his groundbreaking works "Historia Plantarum (Theophrastus), Enquiry into Plants" () and "On the Causes of Plants", () Theophrastus established the foundations of Botany, botanical science. His given name was (Ancient Greek: ); the nickname Theophrastus ("divine speaker") was reputedly given to him by Aristotle in recognition of his eloquent style. He came to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sequent
In mathematical logic, a sequent is a very general kind of conditional assertion. : A_1,\,\dots,A_m \,\vdash\, B_1,\,\dots,B_n. A sequent may have any number ''m'' of condition formulas ''Ai'' (called " antecedents") and any number ''n'' of asserted formulas ''Bj'' (called "succedents" or " consequents"). A sequent is understood to mean that if all of the antecedent conditions are true, then at least one of the consequent formulas is true. This style of conditional assertion is almost always associated with the conceptual framework of sequent calculus. Introduction The form and semantics of sequents Sequents are best understood in the context of the following three kinds of logical judgments: Unconditional assertion. No antecedent formulas. * Example: ⊢ ''B'' * Meaning: ''B'' is true. Conditional assertion. Any number of antecedent formulas. Simple conditional assertion. Single consequent formula. * Example: ''A1'', ''A2'', ''A3'' ⊢ ''B'' * Meaning: IF ''A1'' AND ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Formal Proof
In logic and mathematics, a formal proof or derivation is a finite sequence of sentences (known as well-formed formulas when relating to formal language), each of which is an axiom, an assumption, or follows from the preceding sentences in the sequence, according to the rule of inference. It differs from a natural language argument in that it is rigorous, unambiguous and mechanically verifiable. If the set of assumptions is empty, then the last sentence in a formal proof is called a theorem of the formal system. The notion of theorem is generally effective, but there may be no method by which we can reliably find proof of a given sentence or determine that none exists. The concepts of Fitch-style proof, sequent calculus and natural deduction are generalizations of the concept of proof. The theorem is a syntactic consequence of all the well-formed formulas preceding it in the proof. For a well-formed formula to qualify as part of a proof, it must be the result of applying a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Transposition (logic)
In logic and mathematics, contraposition, or ''transposition'', refers to the inference of going from a conditional statement into its logically equivalent contrapositive, and an associated proof method known as . The contrapositive of a statement has its antecedent and consequent negated and swapped. Conditional statement P \rightarrow Q. In formulas: the contrapositive of P \rightarrow Q is \neg Q \rightarrow \neg P . If ''P'', Then ''Q''. — If not ''Q'', Then not ''P''. "If ''it is raining,'' then ''I wear my coat''." — "If ''I don't wear my coat,'' then ''it isn't raining''." The law of contraposition says that a conditional statement is true if, and only if, its contrapositive is true. Contraposition ( \neg Q \rightarrow \neg P ) can be compared with three other operations: ; Inversion (the inverse), \neg P \rightarrow \neg Q:"If ''it is not raining,'' then ''I don't wear my coat''." Unlike the contrapositive, the inverse's truth value is not at all dependen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Antecedent (logic)
An antecedent is the first half of a hypothetical proposition, whenever the if-clause precedes the then-clause. In some contexts the antecedent is called the ''protasis''. Examples: * If P, then Q. This is a nonlogical formulation of a hypothetical proposition. In this case, the antecedent is P, and the consequent is Q. In the implication "\phi implies \psi", \phi is called the antecedent and \psi is called the consequent.Sets, Functions and Logic - An Introduction to Abstract Mathematics, Keith Devlin, Chapman & Hall/CRC Mathematics, 3rd ed., 2004 Antecedent and consequent are connected via logical connective to form a proposition. * If X is a man, then X is mortal. "X is a man" is the antecedent for this proposition while "X is mortal" is the consequent of the proposition. * If men have walked on the Moon, then I am the king of France. Here, "men have walked on the Moon" is the antecedent and "I am the king of France" is the consequent. Let y=x+1. * If x=1 then y=2,. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Consequent
A consequent is the second half of a hypothetical proposition. In the standard form of such a proposition, it is the part that follows "then". In an implication, if ''P'' implies ''Q'', then ''P'' is called the antecedent and ''Q'' is called the consequent. In some contexts, the consequent is called the ''apodosis''.See Conditional sentence. Examples: * If P, then Q. Q is the consequent of this hypothetical proposition. * If X is a mammal, then X is an animal. Here, "X is an animal" is the consequent. * If computers can think, then they are alive. "They are alive" is the consequent. The consequent in a hypothetical proposition is not necessarily a consequence of the antecedent. * If monkeys are purple, then fish speak Klingon. "Fish speak Klingon" is the consequent here, but intuitively is not a consequence of (nor does it have anything to do with) the claim made in the antecedent that "monkeys are purple". See also * Antecedent (logic) * Conjecture * Necessity and s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Material Conditional
The material conditional (also known as material implication) is a binary operation commonly used in logic. When the conditional symbol \to is interpreted as material implication, a formula P \to Q is true unless P is true and Q is false. Material implication is used in all the basic systems of classical logic as well as some nonclassical logics. It is assumed as a model of correct conditional reasoning within mathematics and serves as the basis for commands in many programming languages. However, many logics replace material implication with other operators such as the strict conditional and the variably strict conditional. Due to the paradoxes of material implication and related problems, material implication is not generally considered a viable analysis of conditional sentences in natural language. Notation In logic and related fields, the material conditional is customarily notated with an infix operator \to. The material conditional is also notated using the i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Proof By Contrapositive
Proof most often refers to: * Proof (truth), argument or sufficient evidence for the truth of a proposition * Alcohol proof, a measure of an alcoholic drink's strength Proof may also refer to: Mathematics and formal logic * Formal proof, a construct in proof theory * Mathematical proof, a convincing demonstration that some mathematical statement is necessarily true * Proof complexity, computational resources required to prove statements * Proof procedure, method for producing proofs in proof theory * Proof theory, a branch of mathematical logic that represents proofs as formal mathematical objects * Statistical proof, demonstration of degree of certainty for a hypothesis Law and philosophy * Evidence, information which tends to determine or demonstrate the truth of a proposition * Evidence (law), tested evidence or a legal proof * Legal burden of proof, duty to establish the truth of facts in a trial * Philosophic burden of proof, obligation on a party in a dispute to provide ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Contraposition
In logic and mathematics, contraposition, or ''transposition'', refers to the inference of going from a conditional statement into its logically equivalent contrapositive, and an associated proof method known as . The contrapositive of a statement has its antecedent and consequent negated and swapped. Conditional statement P \rightarrow Q. In formulas: the contrapositive of P \rightarrow Q is \neg Q \rightarrow \neg P . If ''P'', Then ''Q''. — If not ''Q'', Then not ''P''. "If ''it is raining,'' then ''I wear my coat''." — "If ''I don't wear my coat,'' then ''it isn't raining''." The law of contraposition says that a conditional statement is true if, and only if, its contrapositive is true. Contraposition ( \neg Q \rightarrow \neg P ) can be compared with three other operations: ; Inversion (the inverse), \neg P \rightarrow \neg Q:"If ''it is not raining,'' then ''I don't wear my coat''." Unlike the contrapositive, the inverse's truth value is not at all dependen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Denying The Antecedent
Denying the antecedent (also known as inverse error or fallacy of the inverse) is a formal fallacy of inferring the inverse from an original statement. Phrased another way, denying the antecedent occurs in the context of an indicative conditional statement and assumes that the negation of the antecedent implies the negation of the consequent. It is a type of mixed hypothetical syllogism that takes on the following form: :If ''P'', then ''Q''. :Not ''P''. :Therefore, not ''Q''. which may also be phrased as :P \rightarrow Q (P implies Q) :\therefore \neg P \rightarrow \neg Q (therefore, not-P implies not-Q) Arguments of this form are invalid. Informally, this means that arguments of this form do not give good reason to establish their conclusions, even if their premises are true. The name ''denying the antecedent'' derives from the premise "not ''P''", which denies the "if" clause (antecedent) of the conditional premise. The only situation where one may deny the an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Affirming The Consequent
In propositional logic, affirming the consequent (also known as converse error, fallacy of the converse, or confusion of necessity and sufficiency) is a formal fallacy (or an invalid form of argument) that is committed when, in the context of an indicative conditional statement, it is stated that because the consequent is true, therefore the antecedent is true. It takes on the following form: :: If ''P'', then ''Q''. :: ''Q''. :: Therefore, ''P''. which may also be phrased as : P \rightarrow Q (P implies Q) : \therefore Q \rightarrow P (therefore, Q implies P) For example, it may be true that a broken lamp would cause a room to become dark. It is not true, however, that a dark room implies the presence of a broken lamp. There may be no lamp (or any light source). The lamp may also be off. In other words, the consequent (a dark room) can have other antecedents (no lamp, off-lamp), and so can still be true even if the stated antecedent is not. Converse errors are comm ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]